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Abstract
Cardiovascular disease complications are the leading cause of morbidity and mortality in patients with Type 2 
diabetes (T2DM). Left ventricular diastolic dysfunction (LVDD) is one of the earliest myocardial characteristics of 
diabetic cardiac dysfunction. Therefore, we aimed to develop an LVDD-risk predictive model to diagnose cardiac 
dysfunction before severe cardiovascular complications arise. We trained an artificial neural network model to 
predict LVDD risk with patients’ clinical information. The model showed better performance than classical machine 
learning methods such as logistic regression, random forest and support vector machine. We further explored 
LVDD-risk/protective features with interpretability methods in neural network. Finally, we provided a freely 
accessible web server called LVDD-risk, where users can submit their clinical information to obtain their LVDD-risk 
probability and the most noteworthy risk indicators.

Key points
 • Left ventricular diastolic dysfunction(LVDD) is the most common initial myocardial characteristic of diabetic 

cardiac dysfunction, We constructed an LVDD-risk predict model for earlier detection and diagnosis of serious 
cardiovascular disease.

 • We built an LVDD-risk predict model using artificial neural network and then explored LVDD-risk/protective 
features using interpretability methods based on the built model.

 • We have provided a web server tool for users to predict own LVDD-risk.

Keywords Diabetic complications, Left ventricular diastolic dysfunction, Cardiovascular disease, Machine learning, 
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Introduction
Cardiovascular disease complications are the leading 
cause of morbidity and mortality in patients with type 
2 diabetes mellitus (T2DM) [1]. T2DM can cause myo-
cardial ischemia through microvascular [2] or macro-
vascular alterations [3], as well as directly impairing the 
myocardium [4]. Hyperglycemia, hyperinsulinemia, 
and insulin resistance can result in alterations in vascu-
lar homeostasis [5], reduced levels of nitric oxide, and 
increased levels of reactive oxygen species. These changes 
promote inflammation, leading to atherosclerosis and 
myocardial dysfunction [6]. Over time, the interplay 
of these factors frequently leads to myocardial fibrosis, 
hypertrophy, ischemia, diastolic and systolic dysfunction 
[7], and ultimately, heart failure [8] as the disease pro-
gresses. Currently, there are few therapies that can fully 
reverse the organ damage caused by the late cardiovas-
cular complications of diabetes [9]. However, timely diag-
nosis and early intervention could possibly prevent or 
even reverse the occurrence and progression of diabetes 
complications [10, 11].

Numerous studies have reported that left ventricular 
diastolic dysfunction(LVDD) is the most common initial 
myocardial characteristic of diabetic cardiac dysfunction 
and LVDD is a easier impairment to diagnose from the 
wider range of early subclinical cardiac complications 
[12–14]. Several articles already talked about the applica-
tion of LVDD as a diagnostic indicator for cardiovascu-
lar disease complications [12, 15]. Compared to current 
researches mainly focused on the cardiovascular events 
in diabetes itself [16, 17], such as the risk of heart fail-
ure or mortality, LVDD-targeted predictive model can 
advance the diagnostic time point of myocardial damage, 
leaving enough time and possibility for early intervention.

In this work, we investigated 805 Chinese T2DM 
patients with or without LVDD. We trained an artificial 
neural network to predict LVDD risk in T2DM patients 
based on the T2DM populations in the Chinese com-
munities. In contrast to current studies that use Elec-
trocardiogram [18–21] to predict cardiac dysfunction, 
we employ clinical indicators to model the prediction of 
LVDD. We then explored the risk/protective factors of 
LVDD using interpretability methods in neural network. 
Finally, we deployed the model online and provided a 
freely accessible web server named LVDD-risk ( h t t p  : / /  w 
w w .  b i  g c .  o n l  i n e /  E x  s g R N A) to make it more accessible for 
physicians and patients to use.

Materials and methods
Study population
805 patients with type 2 diabetes (T2DM) were inves-
tigated from June 2021 to December 2022 at endocri-
nology department of the Shaanxi People’s Hospital. 
All patients were over 18 years old and diagnosed with 

T2DM based on the criteria for diabetes proposed by 
WHO diabetes expert committee in 2022. The following 
patients were exclused:

(1) Diagnosed with type 1 diabetes, gestational diabetes 
or any other special types of diabetes;

(2) Those with concomitant acute complications such as 
ketoacidosis or hyperosmolar coma;

(3) Those with concomitant acute and chronic 
infections, malignant tumors, or liver and kidney 
function damage;

(4) Those with concomitant hypertension, coronary 
atherosclerotic heart disease, rheumatic immune 
system disease, hypertensive heart disease, valvular 
heart disease, pericardial disease, or any other 
serious cardiovascular diseases.

Participants were diagnosed with LVDD according to 
internationally adopted standards set by the American 
Society of Echocardiography and European Associa-
tion of Cardiovascular Imaging [22]. The early diastolic 
transmitral velocities(E) and late diastolic transmitral 
velocities(L) were measured by doppler echocardiog-
raphy. The T2DM patients were classified into LVDD 
group(E/A <1.0, 597 patients) and control group(E/A ≥
1.0, 208 patients). Ethical approval was obtained, and all 
participants provided informed consent before taking 
part.

Laboratory and clinical characteristics
The following clinical characteristics and labora-
tory examination results were collected: age, sex, body 
mass index(BMI), waist hip ratio(WHR), systolic blood 
pressure(SBP), diastolic blood pressure(DBP), smoking 
history, drinking history, diabetes family history. Diabe-
tes complications: diabetes retinopathy(DR), diabetes 
peripheral neuropathy(DPN), diabetes nephropathy(DN), 
atherosclerosis(AS), fatty liver disease(FLD). Diabetes 
medication history: insulin, biguanides, αglycosidase 
inhibitor, dipeptide kallidinogenase inhibitor IV(DPPIV), 
sodium glucose transporter 2 inhibitor(SGLT2). 
Vitamin D(VitD), triglyceride(TG), high density 
lipoprotein(HDL), low density lipoprotein(LDL), 
white blood cell count(WBC), neutrophil/lymphocyte 
ratio(NLR), urine microalbumin/creatinine ratio(ACR), 
24-hour urine protein(UTP), high-sensitive cardiac 
troponin(HSCTN).

Measured values less than lower quartile(QL) – 
1.5 × interquartile range(IQR) or greater than upper 
quartile(UQ) + 1.5 × IQR were considered outliers and 
recognized as missing data. The missing data were 
replaced with the median. All measured data were nor-
malized using Z-scores.

http://www.bigc.online/ExsgRNA
http://www.bigc.online/ExsgRNA
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Statistical analysis and model development
All statistical analyses included in this study were con-
ducted using Python software version 3.9.1. We built 
the artificial neural network(ANN) model using Keras 
(https://keras.io/) with the TensorFlow backend engine. 
ANN model had two hidden layers with 128 and 64 
nodes. Three machine learning algorithms were used 
for comparison purposes and were implemented using 
the scikit-learn (https://scikit-learn.org/) library: logistic 
regression, random forest, and support vector machine 
(SVM).

ANN modeling
Artificial neural networks (ANNs) are computational 
models inspired by the human brain. They are com-
prised of a large number of connected nodes, each of 
which performs a simple mathematical operation. Each 
node’s output is determined by this operation, as well as 
a set of parameters that are specific to that node. By con-
necting these nodes together and carefully setting their 
parameters, very complex functions can be learned and 
calculated.

a typical neural network consists of an input layer, an 
output layer, and one or more hidden layers in between. 
Each layer can have multiple nodes, where each node 
represents a neuron. Input signals from other neurons 
are transmitted to a neuron through links with associated 
weights. When the accumulated input reaches a certain 
threshold, the neuron outputs the received total input 
value. A fully connected layer exists between the hidden 
layer(s) and the output layer to assist in the final result 
output.

The mathematical expression for the input layer is as 
follows:

 
y = f

(
n∑

i=1

ωixi − h

)

The activation function f is commonly used in neural 
networks. Popular activation functions include the sig-
moid, Tanh, and ReLU. When the sum of the products 
of all inputs and their corresponding connection weights 
exceeds a threshold, the output is 1; otherwise, the out-
put is 0.

If the number of input layer nodes is n, the number of 
nodes in the hidden layer is l, and the number of nodes 
in the output layer is m. The weights from the input layer 
to the hidden layer are denoted as ω ij , and the weights 
from the hidden layer to the output layer are denoted as 
ω jk . The biases from the input layer to the hidden layer 
are denoted as aj , and the biases from the hidden layer 
to the output layer are denoted as bk. The learning rate is 
represented as η, and the activation function is denoted 

as f(x). All input variables should pass through the activa-
tion function, the output of the hidden layer, denoted as 
Hj , can be expressed as follows:

 
Hj = f

(
n∑

i=1

ωijxi + aj

)

The predicted output of the neural network, denoted as 
Ok, can be calculated using the following formula:

 
Ok =

n∑
j=1

ωjkHj + bk

Logistic regression modeling
Logistic regression is used for binary classification where 
we use sigmoid function, that takes input as indepen-
dent variables and produces a probability value between 
0 and 1.The logistic regression model transforms the 
linear regression function continuous value output into 
categorical value output using a sigmoid function, which 
maps any real-valued set of independent variables input 
into a value between 0 and 1. This function is known as 
the logistic function.

Let the independent input features be:

 

X =




x11 · · · x1m
...

. . .
...

xn1 · · · xnm




And the dependent variable is Y having only binary value 
i.e. 0 or 1.

 
y =

{ 0 if class 1
1 if class 2

Apply the multi-linear function to the input variables X.

 
z =

(∑n

i=1
ωixi

)
+ b

Then use the sigmoid function where the input will be z 
and find the predicted y between 0 and 1

 
σ (z) = 1

1 − e−z

Random forest modeling
The Random Forest (RF) algorithm is an ensemble classi-
fier that utilizes classification or regression trees as base 
classifiers. It constructs an ensemble of decision trees by 
using the bootstrap sampling method to randomly select 
k samples with replacement from the original training 

https://keras.io/
https://scikit-learn.org/
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dataset N, creating k distinct training subsets. Each sub-
set is then used to build a decision tree. By constructing 
these trees, the algorithm aims to address classification 
problems.

SVM modeling
Support Vector Machine (or SVM) is a machine learn-
ing technique used for classification tasks. Briefly, SVM 
works by identifying the optimal decision boundary that 
separates data points from different groups (or classes), 
and then predicts the class of new observations based 
on this separation boundary.Depending on the situa-
tions, the different groups might be separable by a linear 
straight line or by a non-linear boundary line.

ROC-AUC and PR-AUC
The efficacy of the models was evaluated using the 
receiver operating characteristic curve, area under the 
curve (ROC-AUC) and the precision-recall curve, area 
under the curve(PR-AUC).

ROC graphs are two-dimensional graphs where the 
true positive rate is plotted on the Y-axis and the false 
positive rate is plotted on the X-axis. An ROC graph 
illustrates the trade-offs between benefits (TPR, true pos-
itive rate) and costs (FPR, false positive rate).

A series of samples were sort in descending order based 
on the probability of being classified as positive. Start-
ing from the highest probability and moving down, the 
“Score” value is used as the threshold. If the probability 
of a test sample belonging to the positive class is greater 
than this threshold, it is considered a positive sample; 
otherwise, it is considered a negative sample. Beginning 
with the first sample, set its score value as the thresh-
old. Then, all subsequent samples, including the current 
one, are classified as negative. The TPR and FPR are cal-
culated for each sample at the threshold, and the ROC 

curve is plotted. The area under curve (AUC) represents 
the area under the ROC curve, ranging between 0 and 1. 
A higher AUC value intuitively indicates better classifier 
performance.

Similarly, PR (Precision-Recall) graphs represent the graph 

which precision rate ( true positive
true positive+false positive ) is plotted 

on the Y axis and recall rate ( true positive
true positive+false negative ) 

is plotted on the X axis. The area under the PR curve (PR-
AUC) represents the area under the PR curve, and a higher 
PR-AUC value also intuitively indicates better classifier 
performance.

The participants were randomly divided into train-
ing(5/6) and validation(1/6) sets. 5-fold cross-validation 
was performed on the training set, and the models were 
tested on the validation set. The details is shown in Fig. 1.

Feature identification by class-specific feature saliency map 
and lime explanation
We generated class-specific saliency maps to explore 
which types of patients were most and least likely to be 
predicted with LVDD. Feature identification was achieved 
by numerically generating a “synthetic patients data”, 
which is representative of the class in terms of the above-
mentioned classifier. Formally, let Sc(p) be the score of 
the class c, computed by classifiers for a guide patient 
d; we would like to find an optimized patient, such that 
the Sc(p) is highest [23, 24]. For the synthetic patients 
data that were most and least likely to be predicted with 
LVDD. We calculated the importance of features to pre-
dict results with lime(Local Interpretable Model-Agnos-
tic Explanations) [25] and summed the weights of every 
factor of the 1000 generated patients.

Fig. 1 The overflow diagram
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Materials and code availability
The code and related datasets are freely available at  h t t p  s : 
/  / g i t  h u  b . c  o m /  e w 3 1  4 /  L V D D _ r i s k.

Results
Features characteristics and performance of ANN LVDD risk 
model
Among all 805 patients with type 2 diabetes melli-
tus (T2DM), 597 (74%) had LVDD. The laboratory test 
results and demographic characteristics of the partici-
pants are presented in Table  1. Significant differences 
were found in sex, smoking, drinking, diabetes peripheral 
neuropathy, the use of insulin and dipeptide kallidinoge-
nase inhibitor IV, atherosclerosis, fatty liver disease, age, 
body mass index, systolic pressure, diastolic pressure, tri-
glyceride, high density lipoprotein, low density lipopro-
tein, white blood cell count, neutrophil/lymphocyte ratio 
between the LVDD group and the control group(p < 0.05). 
We further calculated the variance inflation factor(VIF) 
and performed spearman regression between features to 

check for multicollinearity (Table 2, Supplemental Figure. 
1). These features showed less correlation. We remove 
the imbalanced age feature to ensure the generalizability 
of the model.

Compare to the logistic regression, random forest, and 
SVM algorithms, the ANN model showed the best per-
formance in 5-fold-cross vaildation and the vaildation 
set(ROC-AUC = 0.741 ± 0.055/0.779, PR-AUC=0.881 ±
0.036/0.916), followed by logistic regression (ROC-
AUC = 0.740 ± 0.052/0.753, PR-AUC = 0.882 ±
0.027/0.890), SVM(ROC-AUC = 0.723 ± 0.064/0.748, 
PR-AUC=0.863 ± 0.032/0.887) and random forest(ROC-
AUC = 0.644 ± 0.069/0.661, PR-AUC=0.824 ±
0.045/0.867) (Fig. 2, Table 3). Therefore, the ANN model 
was chosen to build the LVDD risk prediction model.

The most risk/protective features of LVDD
To explored which features were the most risk/protective 
for the model’s prediction. We generated 1000 fictional 
patients who were predicted to have LVDD(predicted 

Table 1 Characteristics of the participants
Control LVDD P-value

Male 151 374 9.5*10− 3

Famle 57 223
24-Hour Urine Protein(mg/dL) 105.9(97.9 ~ 113.8) 107.8(102.5 ~ 113.0) 0.71
Age(year) 41.6(40.4 ~ 42.7) 59.2(58.6 ~ 59.9) 2.5*10− 112

Atherosclerosis(Y/N) 147/61 551/46 2.6*10− 15

Biguanides(Y/N) 115/93 375/222 0.06
Body Mass index(kg/m2) 24.5(24.1 ~ 25.0) 23.7(23.5 ~ 23.9) 1.5*10− 4

Diabetes Nephropathy(Y/N) 88/120 266/331 0.57
Diabetes Peripheral Neuropathy(Y/N) 140/68 501/96 3.0*10− 7

Diabetes Retinopathy(Y/N) 30/178 110/487 0.19
Diastolic Pressure(mmHg) 76.5(75.5 ~ 77.5) 74.4(73.8 ~ 75.0) 5.0*10− 4

Dipeptide Kallidinogenase Inhibitor IV(Y/N) 14/194 95/502 8.6*10− 4

Drinking(Y/N) 52/156 109/488 0.04
Family History(Y/N) 99/109 250/347 0.15
Fatty Liver Disease(Y/N) 118/90 218/379 3.6*10− 7

High density lipoprotein(mmol/L) 1.0(1.0 ~ 1.0) 1.1(1.1 ~ 1.1) 1.7*10− 4

High-sensitive cardiac troponin(ng/mL) 7.1(6.7 ~ 7.5) 7.3(7.1 ~ 7.6) 0.3
Insulin(Y/N) 45/163 197/400 2.1*10− 3

Low density lipoprotein(mmol/L) 2.8(2.7 ~ 2.9) 2.6(2.6 ~ 2.7) 3.6*10− 3

Neutrophil/lymphocyte ratio(%) 1.6(1.5 ~ 1.6) 1.6(1.6 ~ 1.7) 0.04
Smoking(Y/N) 86/122 181/416 3.6*10− 3

Sodium glucose transporter 2 inhibitor(Y/N) 32/176 116/481 0.19
Systolic Pressure(mmHg) 116.5(115.2 ~ 117.8) 118.3(117.4 ~ 119.2) 0.03
Triglyceride(mmol/L) 1.6(1.5 ~ 1.6) 1.4(1.4 ~ 1.5) 0.04
Urine microalbumin/Creatinine ratio(%) 6.8(6.2 ~ 7.3) 7.0(6.5 ~ 7.4) 0.61
Vitamin D(ng/ml) 15.6(14.9 ~ 16.4) 16.3(15.8 ~ 16.8) 0.15
Waist-Hip Ratio 0.9(0.9 ~ 0.9) 0.9(0.9 ~ 0.9) 0.56
α Glycosidase inhibitor(Y/N) 38/170 202/395 2.4*10− 5

White blood cell count(109/L) 6.2(6.0 ~ 6.4) 5.8(5.7 ~ 5.9) 3.4*10− 4

Control：Type 2 diabetes patients with no cardiac complications

LVDD：Type 2 diabetes patients with left ventricular diastolic dysfunction(LVDD)

P-value: Chi-square tests for category data and T-tests for numerical data

https://github.com/ew314/LVDD_risk
https://github.com/ew314/LVDD_risk
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probability > 0.999) and 1000 fictional patients who 
were predicted not to have LVDD(predicted prob-
ability < 0.001). All features were normalized into 
Z-score, with the zero baseline representing the mean 
values(Fig.  3A). We then further calculated the feature 
contribution weights to the model’s prediction results 
for each patient using the LIME explainer. The contribu-
tion weights were summed, and the weights with abso-
lute values higher then 20 were marked as red(risk) or 
blue(protective). We found the ‘DBP > 0.67’, ‘LDL > 0.68’, 
‘SBP<=-0.75’ were the most protective features, while 
‘VITD > 0.49’, ‘SBP > 0.68’, ‘DBP<=-0.64’, ‘HDL > 0.54’ and 
‘WHR > 0.59’ were most risky features.

The web server for LVDD risk prediction
Finally, we developed a web server  (   h t t p : / / b i g c . o n l i n e : 5 0 0 
0 /     ) for users to predict their LVDD risk (Fig. 4). Patients 
could input their own information or choose it from a 
list. Considerating that most patients would not have all 
feature information, We performed leave-one-out feature 
selection to features required for model prediction (Fig. 
5). These 7 most important features were required for 
web server, while other missing features were replaced 

with means. The result page displays a summary of LVDD 
risk probability, and two figures displayed the deviation 
of user information from the population means.

Discussion
In the present study, we created a neural network model 
based on 27 clinical information to predict LVDD risk 
among T2DM patients. The performance of the neu-
ral network were better than classical machine learning 
model such as logistic regression, random forest and 
SVM. We then explore the most risk/protective features 
with interpretability algorithm in neural networks based 
on the built neural network model. we developed a web 
server so that users could easily predict their LVDD risk 
probability and receive warnings about risk factors.

Cardiovascular complications could only be prevented 
or reversed at an early stage [26]. In comparison to cur-
rent research, which primarily focuses on building mod-
els to predict cardiovascular events [16, 17], our aim 
was to build a model to predict LVDD risk for T2DM 
patients, which is an early sign of cardiovascular events 
[27, 28]. So that the alteration in myocardial structure 
could be detect at an earlier stage, leading to timely diag-
nosis and intervention. We built the model using an ANN 
model, which has the ability to extract high-level features 
from data through multi-level nonlinear mapping [29], 
giving it better performance than the three classical mod-
els. However, neural networks are black box models with 
complex internal operation processes, making it difficult 
to understand and explain the model’s decision-making 
process. Therefore, we used two interpretability methods 
in neural networks, class-specific feature saliency maps 
[23, 24]and lime explainer [25], to find the key features 
for model prediction and the importance of risk/protec-
tive factors.

We find the higher HDL, VitD, SBP and WHR, and 
lower DBP, was the most risk factors for LVDD patients. 
These factors obtained in this study were similar to the 
results of previous studies. For example, the high SBP 
and low DBP have already been regenzed as cardiovas-
cular risk factors [30], and their combination showed 
better performance. High WHR [31] and VitD [32] were 
also well-known risk factors for cardiovascular disease. 
However, our results showed that a high level of HDL 
was a risk factor, while high HDL level has been widely 
accepted as a protective factor [33]. These results seems 
contrary to common sense [34]. Many observational 
studies have demonstrated that low levels of HDL-C 
are associated with an increased risk of coronary heart 
disease [35]. However, the protective role of HDL cho-
lesterol (HDL-C) has been seriously challenged by the 
evidence from recent genetic, epidemiologic and clinical 
trials. Nathalie Pamir found that lower HDL levels only 
predicted an increased risk of cardiovascular disease for 

Table 2 VIF of all characteristics
VIF

SEX 1.8
Smoking 1.8
Age 1.7
Drinking 1.5
Body Mass index 1.4
Diastolic Pressure 1.4
Fatty Liver Disease 1.4
High density lipoprotein 1.4
Systolic Pressure 1.4
Triglyceride 1.4
Waist-Hip Ratio 1.4
Low density lipoprotein 1.3
Atherosclerosis 1.2
High-sensitive cardiac troponin 1.2
White blood cell count 1.2
Biguanides 1.1
Diabetes Nephropathy 1.1
Diabetes Peripheral Neuropathy 1.1
Diabetes Retinopathy 1.1
Dipeptide Kallidinogenase Inhibitor IV 1.1
Insulin 1.1
Neutrophil/lymphocyte ratio 1.1
Sodium glucose transporter 2 inhibitor 1.1
Urine microalbumin/Creatinine ratio 1.1
Vitamin D 1.1
α Glycosidase inhibitor 1.1
24-Hour Urine Protein 1.0
Family History 1.0
VIF：Variance inflation factor

http://bigc.online:5000/
http://bigc.online:5000/
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white adults and not for black adults [36]. Large-scale 
prospective cohort studies also contradict the previous 
finding of a linear inverse relationship between HDL and 
cardiovascular disease [7, 16–18]. Although it is a com-
mon finding that low levels of HDL predict increased 

cardiovascular risk, data from several cohorts have 
revealed a suggestion of increased cardiovascular out-
comes in those with extremely high HDL levels [37]. High 
HDL-C was reported to be associated with increased 
cardiovascular risk in hypertensive patients [38], while 

Table 3 ROC-AUC and PR-AUC of 5-cross-vaildated
Exp Logistic Regression Random forest SVM ANN

ROC-AUC PR-AUC ROC-AUC PR-AUC ROC-AUC PR-AUC ROC-AUC PR-AUC
1 0.82 0.92 0.69 0.85 0.79 0.89 0.83 0.93
2 0.70 0.87 0.58 0.78 0.67 0.82 0.73 0.89
3 0.72 0.88 0.58 0.81 0.75 0.89 0.70 0.86
4 0.75 0.86 0.66 0.79 0.75 0.86 0.73 0.85
5 0.70 0.88 0.71 0.88 0.66 0.85 0.72 0.88
Fin 0.75 0.89 0.66 0.87 0.75 0.89 0.78 0.92
Exp: Every round experiment of 5-fold cross inspection

Fin: Finally vaildation

Fig. 2 A&B: Model performance (ROC-AUC&PR-AUC) of the logistic regression(Logit), random forest(RF), support vector machine(SVM) and artificial 
neural network(ANN) model in the 5-fold cross-validation process. C&D: Model performance (ROC-AUC&PR-AUC) in validation dataset
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hypertension is a common symptom of T2DM patients 
[39]. A study of the northern China population [40], 
detected that HDL-c levels showed a U-shaped relation-
ship with all-cause mortality in younger participants(< 65 
years old), and very high HDL-c levels(≥ 80 mg/dl) were 
independently associated with an increased total mor-
tality risk. In our data, the HDL of LVDD patients were 
significantly higher than those without LVDD(ANOVA 

oneway test, P-value = 1.66 × 10−4). We suggest that 
the association between HDL and LVDD risk in T2DM 
patients needs more research.

In Table 4, we summarize current studies that predict 
left ventricular dysfunction in T2DM patients. Studies 
of Soh, C.H., etc [41]., Chee KH, etc [42]. and Yan, Wf., 
etc [43]. primarily rely on instrumental measurements 
to predict LVDD in patients with diabetes. Halabi, A., 

Fig. 4 Home page and result page of the web tools

 

Fig. 3 A&B: Distribution of 1000 most/ least likely to have LVDD-risk patients’ features. C&D: Accumulation of weights of features for the 1000 most/ least 
likely to have LVDD-risk patients. Absolute values higher then 20 were marked as red(risk)/protective(blue)
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etc [44]. used 36 clinical indicators to model and found 
that natriuretic peptides and troponin are risk factors for 
subclinical LV dysfunction. Hao, M., etc [45]. checked 
the association between 41 clinical indicators and dia-
stolic cardiac dysfunction and established a risk predic-
tion model using six independent parameters: age, BMI, 
triglyceride, creatine phosphokinase isoenzyme, serum 
sodium, and urinary albumin/creatinine ratio. Chen Y, 
etc [46]. analyzed the association between 10 biochemi-
cal indicators and LVDD and found a significant increase 
in systolic blood pressure, cholesterol, LDL cholesterol, 
and fasting glucose in LVDD patients. However, in our 
results, while systolic blood pressure also emerged as a 
risk factor, LDL was found to be a protective factor for 
LVDD.

Limitations of the current study should be addressed. 
Our data only has outcome information without follow-
time. Thus, we could only build classification model 

to predict LVDD outcome risk but without the time of 
onset. The LVDD diagnosis came from the echocardiog-
raphy in medical records, which only provided classified 
labels, missing the detailed E/A ratio value. We could 
have further explored the features with linearly increas-
ing LVDD risk if the E/A ratio value was available. We 
hope this issue will be addressed by collecting a larger 
sample size.

Conclusion
In summary, we contrust an ANN model to predict 
LVDD-risk for T2DM patients. This enables us to diag-
nose and detect myocardial damage in T2DM patients 
with early-stage heart failure.

Based on the built model, We explored the risk/pro-
tective factors of LVDD with interpretability methods 
in neural network. We find the higher HDL, VitD, SBP 
and WHR, and lower DBP, was the most risk factors for 

Table 4 List of relevant studies on predicting left ventricular dysfunction in T2DM patients
Source Input features Output prediction Participants Year
Soh, C.H., etc. [41] energy waveform electrocardiogram subclinical left ventricular dysfunction 178 + 97 2024
Chee KH, etc. [42] echocardiographic left ventricular diastolic dysfunction 301 2021
Yan, Wf., etc. [43] volume-time curve of cardiac magnetic resonance left ventricular diastolic function 48 2021
Halabi, A., etc. [44] 36 clinical features subclinical left ventricular dysfunction 804 2022
Hao, M., etc. [45] 41 clinical features diastolic cardiac dysfunction 3030 2023
Chen Y, etc. [46] 10 clinical features left ventricular diastolic function 84 2022

Fig. 5 Leave-one-out feature selection
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LVDD patients. We also provided a freely accessible web 
server named LVDD-risk( h t t p  : / /  w w w .  b i  g c .  o n l  i n e /  E x  s g R 
N A; http://www.xmuptcgd.top/LVDD) for users to  p r e d 
i c t LVDD risk.
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