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Abstract

Introduction The Fasting Mimicking Diet (FMD) has gained significant attention as a potential intervention for
reducing cardiovascular risk factors. While studies have investigated its effectiveness, findings have been inconsistent.
Therefore, this systematic review and meta-analysis aimed to clarify evidence on the impact of FMD on cardiovascular
risk factors.

Method PubMed, Web of Science, Scopus, and Google Scholar were searched for eligible Randomized controlled
trials (RCTs) published up to July 2024. Weighted mean differences (WMD) were calculated for the net changes in risk
factors using random-effects models.

Results Eleven RCTs (with twelve treatment arms) were included. FMD significantly reduced glycated hemoglobin
(HbA1c) (WMD = -8.589 mmol/mol, 95% Cl: —12.389, -4.769), insulin-like growth factor 1 (IGF-1) (WMD=-19.211 ng/
ml, 95% Cl: —32.986, -5.437), systolic blood pressure (SBP) (WMD = -4.148 mmHg, 95% Cl: —7.584, -0.711), and diastolic
blood pressure (DBP) (WMD =-2.263 mmHg, 95% Cl: —4.162, -0.364) levels. No significant effects were observed on
other cardiovascular risk factors.

Conclusion This meta-analysis suggests that FMD can significantly reduce HbA1c, IGF-1, SBP, and DBP levels. Further
research is warranted to investigate the long-term and potential clinical implications of FMD on cardiovascular health.

Prospero registration The protocol of the study was registered in the International Prospective Register of
Systematic Reviews (PROSPERO registration no: CRD42024569426).
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Introduction

Cardiovascular disease (CVD) persists as the leading
cause of mortality worldwide accounting for 32% of all
global deaths. A cluster of risk factors, including hyper-
tension, elevated cholesterol, obesity, insulin resistance,
and chronic inflammation contribute significantly to
CVD development [1]. The management of these risk
factors through lifestyle modifications, particularly
dietary interventions, represents a fundamental aspect
of both the prevention and treatment of CVD. In recent
years, Fasting Mimicking Diet (FMD) has gained sig-
nificant attention as a novel approach that emulates
the physiological benefits of traditional fasting while
enabling limited caloric intake [2]. The objective of this
dietary approach is to provide the metabolic advantages
of fasting without the challenges associated with food
abstinence. As a result, it has the potential to be a more
acceptable and sustainable option for a broader popula-
tion [1, 2].

FMD is a structured, low-calorie diet that is typically
followed for five consecutive days, with a subsequent
repetition of the diet every few months. During the fast-
ing phase, the diet is designed to provide an adequate
quantity of calories and specific nutrients to prevent the
perception of starvation while simultaneously reducing
calorie intake to a level that induces a fasting-like state
[3, 4]. FMDs often contain low protein, moderate car-
bohydrate, and a relatively higher proportion of healthy
fats, to emulate the physiological responses associated
with fasting, including ketosis, cellular autophagy, and
enhanced metabolic stress resilience, while inducing
calorie restrictions. Following the fasting period, normal
eating is resumed, therefore allowing for periodic meta-
bolic reset without continuous caloric deprivation [4—6].

FMD has been demonstrated to exert significant effects
on multiple cardiovascular risk factors. For example,
FMD may reduce blood pressure, lower blood low-
density lipoprotein (LDL) cholesterol and triglycerides,
enhance insulin sensitivity, and promote weight loss [7—
9]. These beneficial effects are vital in the management
of metabolic syndrome, a cluster of conditions that sig-
nificantly elevate the risk of cardiovascular disease and
diabetes [1, 7]. FMD may also mitigate systemic inflam-
mation, which is increasingly recognized as a contribut-
ing factor to atherosclerosis and other cardiovascular
conditions [1]. FMD also reduces insulin-like growth

Table 1 PICOS criteria for inclusion and exclusion of studies
Parameters

criteria

Participants Human adults

Intervention Fasting mimicking intervention
Comparator Placebo

Outcomes No limitation

Study design Clinical trials

(2025) 17:137

Page 2 of 10

factor 1 (IGF-1) levels, activates cellular autophagy, and
reduces oxidative stress [5, 10], playing a significant role
in cellular maintenance and repair, potentially delaying
the onset of age-related diseases and improving cardio-
vascular health. In addition, FMD’s influence on hor-
mone regulation and lipid metabolism may contribute to
improved endothelial function and vascular health, fur-
ther reducing the risk of cardiovascular events [9-11].

While preliminary clinical studies suggest the potential
benefits of FMD on cardiovascular risk factors, inconsis-
tencies in the findings limit the derivation of conclusive
evidence. Therefore, this review aims to synthesise this
evidence by systematically pooling the effects of these
individual clinical studies, providing a valuable resource
for researchers, clinicians and policymakers aiming to
reduce the burden of cardiovascular disease.

Method

Search strategy

This meta-analysis was designed following PRISMA
guidelines. A comprehensive search of the literature
was conducted using PubMed, SCOPUS, and ISI Web
of Science databases. The PICOS approach was used to
develop search terms using medical and non-medical
subject headings and keywords including human adults
(Population), fasting mimicking diet (Intervention), con-
trol diet (Comparator), cardiovascular risk factor out-
comes (Outcome), and clinical trials (setting/design)
(Table 1). The search strategy details for PubMed, SCO-
PUS, and ISI Web of Science databases are provided in
Supplementary Table 1.

English-language reports of relevant randomized con-
trolled trials (RCTs) published until July 2024 inves-
tigating the impact of fasting-mimicking diets on
cardiovascular factors were included. The reference lists
of the included articles and relevant reviews were also
searched manually. Two reviewers (M.M. and F.A.) inde-
pendently reviewed each article. Any discrepancies were
resolved through discussion with a third reviewer (E.H).
PubMed email alert service was also set up to identify
any new articles published after our initial search. The
protocol of the study was registered in the International
Prospective Register of Systematic Reviews (PROSPERO
registration no: CRD42024569426).

Study selection

Studies were included based on the following eligibil-
ity criteria: (1) controlled trials with either a parallel or
crossover design; (2) reported measurements on anthro-
pometry, blood markers of glycemic status, blood pres-
sure, blood lipids, insulin-like growth factor 1 (IGF-1),
and the inflammatory marker C-reactive Protein (CRP)
at baseline and end of intervention in both intervention
and control groups; (3) an appropriate controlled group
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where the sole difference between the control and inter-
vention groups was the fasting-mimicking diet; (4) an
intervention duration of at least one complete cycle (four
continuous days during one month); and (5) conducted
in adults > 18 years old. Studies that did not meet the eli-
gibility criteria were excluded.

Data extraction

Two investigators (M.M. and H.A.) independently
reviewed the eligible RCTs and extracted relevant data
using a standardized electronic form. The recorded char-
acteristics of the studies included the first author’s name,
year of publication, study country, design, number of
subjects in each group, and intervention characteristics
including cycles of fasting-mimicking diet (FMD), dura-
tion, and participant characteristics (i.e. age, gender, and
body mass index). Where studies used multiple (two-
armed) control groups, each control group was analyzed
and reviewed separately.

Quality assessment

The risk of bias of included studies was systematically
assessed using the Cochrane quality assessment tool
for RCTs. This tool consists of seven criteria for qual-
ity assessment, including random sequence generation
(selection bias), allocation sequence concealment (selec-
tion bias), blinding of participants and personnel (perfor-
mance bias), blinding of outcome assessment (detection
bias), incomplete outcome data (attrition bias), selective
outcome reporting (reporting bias), and other potential
sources of bias. The risk of bias in each study was catego-
rized as low, high, or unclear [12].

Quantitative data synthesis and statistical analysis

The effect FMD intervention on the following cardio-
vascular risk factors were recorded: (1) weight (kg); (2)
waist circumference (cm); (3) fat mass (kg); (4) fat free
mass (kg); (5) BMI (kg.m™2); (6) systolic blood pressure
(mmHg); (7) diastolic blood pressure (mmHg), (8) fast-
ing blood sugar (mg/dl); (9) HbAlc (mmol/mol); (10)
HOMA-IR; 11) IGF-1(ng/ml); 12) triglyceride (mg/dl);
13) total cholesterol (mg/dl); 14) HDL-cholesterol (mg/
dl); 15) LDL-cholesterol (mg/dl) and 16) CRP (mg/l).
Intervention effects were reported as weight mean dif-
ference (WMD) of cardiovascular risk factors along with
95% confidence intervals (CIs). Mean difference was cal-
culated based on net changes from the baseline value of
the cardiovascular risk factors. Where the standard devi-
ations (SDs) of change were not reported, the following
formula was used: square root [(SD pre-intervention)? +
(SD post—in‘cervention)2 - (2 RxSD pre-intervention— SD
post-intervention)], assuming a moderate correlation
coefficient (R)=0.5 [13]. When cardiovascular risk fac-
tor values were presented as medians and interquartile
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ranges (IQR), mean and standard SD were calculated
using a previously defined method [14]. To convert the
interquartile range (IQR) into a minimum-maximum
range, the following equation was used: median+2 x
(Q3-median) and B=median- 2 x(median-Q1), where
A, B, Q1, and Q3 are upper and lower ends of the range,
upper and lower ends of the IQR, respectively. Where
standard errors (SE) were reported, SDs were calculated
using the formula: SD=SExsqrt (n), where (n) is the
number of individuals in each group. Plot digitizer soft-
ware was used to extract data when the outcome variable
was exclusively presented in graphical form.

Heterogeneity among studies was assessed using
Cochran’s test (with a significance level of (P<0.1)) and
quantitatively through the I? statistic. An I value of >50%
indicated significant heterogeneity across the studies.
The pooled effect size was calculated using the random
effects model. A sensitivity analysis was performed using
the leave-one-out method involving excluding individual
studies from meta-analysis and exploring their influence
on the overall effect size and heterogeneity [15]. Poten-
tial publication bias was assessed using funnel plots,
Begg’s rank correlation, and Egger’s weighted regression
tests. To account for this bias in the analyses the Duval
and Tweedie ‘trim and fill’ and ‘fail-safe N’ methods were
used [16]. Subgroup analyses based on population (dia-
betic and non-diabetic) and BMI (230 or <30 kg/m?
were performed to investigate the differences in meta-
analysis outcomes based on these variables. Comprehen-
sive Meta-Analysis (CMA) V3 software (Biostat, NJ) was
used to perform meta-analyses.

Results

Selection and characteristics of included studies

A total of 583 publications were identified through
the primary search of literature (Fig. 1). After exclud-
ing duplicates and irrelevant articles based on their title
and abstracts, 28 studies remained. Following a full-text
review, 17 studies were excluded due to the following rea-
sons: no sufficient data (n="7), not having a control group
(n=2) [17, 18], animal and in-vitro study (n=3), non-
English (n=1), not having a control/placebo group (n=1)
[19], full text not accessible (7 =1), and insufficient dura-
tion of intervention (<4 continuous days, n=2) [8, 20].
Eleven RCTs met the eligibility criteria and were included
in the current systematic review and meta-analysis [3, 7,
9, 10, 21-27]. Of these, 9 studies evaluated anthropomet-
ric measurements [7, 9, 10, 21-26], 9 investigated blood
glycemic indices [7, 9, 10, 21-25, 27], 7 examined blood
lipid profile [7, 9, 10, 21-24], 6 evaluated blood pressure
[7,9, 10, 21, 23, 24], and 6 evaluated CRP [3, 7, 9, 10, 21,
24].
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Fig. 1 Flow chat of literature search process
Characteristics of included studies Data quality

The main characteristics of the 11 qualified studies (12
sub-studies as Van der Velden et al. [9] study had two
controls, n=761) are reported in Table 2. Three stud-
ies exclusively included female participants [25-27] and
others included all genders. FMD cycles varied from 1
to 12 with 1 to 48 weeks intervention durations. Partici-
pants aged between 31.1 and 64.9 years old with a BMI
of between 25.7 and 33.9 kg/m2. Ten RCTs used a paral-
lel design and one used a crossover design [21]. Studies
included individuals with type 2 diabetes (n=4) [9, 10,
23, 24], generally healthy adults (n=3) [3, 21, 22], patients
with breast cancer (n=2) [26, 27], and overweight and
obese individuals (7 =2) 7, 25].

Cochrane risk-of-bias assessment reported high quality
with a total low risk of bias for all domains for the major-
ity of studies included. However, two studies reported a
moderate quality [3, 9] based on the risk of bias assess-
ment (Table S2).

Meta-analysis results

Pooled results from the random-effect model analysis
suggested a slight but non-significant increase in fat-free
mass following FMD (WMD =0.885 kg, 95% CI: —0.059,
1.830, p=0.066) (Fig. 2). However, there was no signifi-
cant effect of FMD on other anthropometric measures
including body weight (Figure S1), waist circumference
(Figure S4), fat mass (Figure S7), and BMI (Figure S12).
Heterogeneity was high for BMI (I=96.4%, p<0.001)
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Fat Free Mass
Study name Statistics for each study Difference in means and 95% CI
Difference Standard Lower Upper

in means error Variance limit limit  Z-Value p-Value
Sadeghian et al, [2021] 1.250 0632 0400 0011 2489 1977 0048 -~
Sulaj, Alba et al, [2022] -4.400 3527 12439 -11.313 2513 -1.248 0212
Mishra, Amrendra et al, [2023] 0.900 0.892 0795 -0.847 2647 1.010 0.313 —+i—
Van den Burg et al, [2024] -1.900 2490 6.201 -6.781 2981 -0.763 0.445
Wei et al, [2017] 0.700 1.808 3270 -2844 4244 0.387 0.699 Ly &

0885 0.482 0232 -0059 1830 1837 0066 <>
-12.50 -6.25 0.00 6.25 12.50

Favours FMD Favours control

Fig. 2 Forest plot detailing weighted mean differences and 95% confidence interval for the impact of FMD on Fat Free Mass (kg)

HbA1c (mmol/mol)

Study name Statistics for each study Difference in means and 95% CI

Difference Standard Lower Upper

in means error  Variance limit limit Z-Value p-Value

Tang et al, [2020] -12.000 1.280 1.638-14.509 -9.491 -9.375 0.000 =
Sulaj et al, [2022] -17.200 5357 28695-27699 -6.701 -3.211 0.001 —_——
Mishra et al, [2023] -8.800 1.694 2.869-12.120 -5480 -5196 0.000 L
Van der et al, [2024] (a) -5.300 4882 23836-14869 4269 -1.086 0278 —a—
Van der et al, [2024] (b) -7.300 4568 20.864-16.253 1653 -1598 0.110 ——
Van den et al, [2024] -2.800 2.152 4632 -7.018 1418 -1301 0.193 =

-8.579 1.944 3.778-12.389 -4769 -4.414 0.000 &

-40.00 -20.00 0.00 20.00 40.00
Favours FMD Favours control

Fig. 3 Forest plot detailing weighted mean differences and 95% confidence interval for the impact of FMD on Hemoglobin A1c (mmol/mol)

and waist circumference (I*=93.9%, p<0.001), moder-
ate for body weight (I>=51.1%, p=0.069), and low for fat
mass (I?=15.82%, p =0.313), and fat-free mass (I>=0.00%,
p=0428) meta-analyses.FMD significantly reduced
HbAlc (WMD = -8.589 mmol/mol, 95% CI: -12.389,
-4.769, p<0.001) (Fig. 3), and IGF-1 (WMD= -19.211
ng/ml, 95% CI: -32.986, -5.437, p=0.006) (Fig. 4). No
significant effect of FMD was observed on FBS (Figure
S15), and HOMA-IR (Figure S20). Heterogeneity was
high for FBS (I>=91.54%, p<0.001), HbAlc (I?=70.04%,
p=0.005), HOMA-IR (I*>=68.44%, p=0.023), and IGF-1
(I>=89.30%, p <0.001).

EMD also significantly reduced SBP (WMD = -4.148
mmHg, 95% CIL: -7.584, -0.711, p=0.018) (Fig. 5) and
DBP (WMD = -2.263 mmHg, 95% CL: -4.162, -0.364,
p=0.020) (Fig. 6). Heterogeneity was medium but non-
significant for SBP (I*=50.37%, p=0.060)] and DBP
(I’=40.98%, p=0.118).

FMD’s effects on triglycerides (Figure S29), total cho-
lesterol (Figure S32), LDL-C (Figure S35) and HDL-C
(Figure S38) were not significant. However, heterogene-
ities were high for LDL-C (I*=90.54%, p<0.001), TGs
(I’=93.4%, p<0.001), TC (I*=94.54%, p<0.001) and
HDL-C (1*=94.07%, p=0.007). EMD effect on CRP level
was also non-significant (Figure S41), with low heteroge-
neity (I =0.00%, p = 0.432).

Sensitivity analysis

The leave-one-out sensitivity analyses did not signifi-
cantly affect the overall results of the meta-analysis or
the heterogeneity observed for body weight, waist cir-
cumference, fat mass, BMI, FBS, HbAlc, HOMA-IR,
TGs, TC, LDL-C, and HDL-C meta-analyses. How-
ever, the meta-analysis of the effect of FMD on fat-free
mass was sensitive to the studies by Sulaj et al. [24] and
Van den et al. [10]. Excluding these studies resulted in
a significant increase in fat-free mass following FMD
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IGF-1
Study name Statistics for each study Difference in means and 95% CI
Difference Standard Lower Upper

in means error Variance  limit limit Z-Value p-Value
Wei et al, [2017) -30.400 1.944 3778 -34209 -26591 -15641  0.000 ||
Stefanie de groot et al, [2020] -42.540 3416 11.670 -49.236 -35844 -12.453  0.000
Videja, Melita et al, [2022] -40.090 10963  120.180 -61.576 -18604 -3657  0.000
Mishra, Amrendra et al, [2023] -7.000 6.634 44006 -20.002 6002 -1.055 0291 ——
Van der Velden et al, [2024] (a) 16.020 14953 223606 -13.288 45328 1071 0284 i
Van der Velden et al, [2024] (b) 17.550 14257 203263 -10.393 45493 1231 0218 =

-19.211 7.028 49392 -32986 -5437 -2734 0006 <@g
-75.00 -37.50 0.00 37.50 75.00
Favours FMD Favours control
Fig. 4 Forest plot detailing weighted mean differences and 95% confidence interval for the impact of FMD on IGF-1
SBP
Study name Statistics for each study Difference in means and 95% CI
Difference Standard Lower Upper

in means error Variance limit limit Z-Value p-Value
Wei et al, [2017] -3.800 2634 6935 8962 1362 -1443 0149 ——
Tang, Fang et al, [2020] -8.040 1.224 1498 -10439 -5641 6570  0.000 E =
Sulaj, Alba et al, [2022] -2.100 4752 22585 -11.414 7214 0442 0659 —_—
Mishra, Amrendra et al, [2023] 2.000 3479 12104 -4819 8819 0575 0565 —t—
Van der Velden et al, [2024] (a) -11.000 5.986 35829 -22732 0732 -1838 0066
Van der Velden et al, [2024] (b) -4.000 5134 26357 -14062 6062 -0779 0436 =
Van den Burg et al, [2024] -1.300 3.489 12172 -8138 5538 -0373 0709

-4.148 1.753 3074 -7584 -0711 -2366  0.018 <>
-25.00 -12.50 0.00 12.50 25.00
Favours FMD Favours control

Fig. 5 Forest plot detailing weighted mean differences and 95% confidence interval for the impact of FMD on Systolic Blood Pressure (mmHg)

DBP
Study name Statistics for each study Difference in means and 95% CI

Difference Standard Lower Upper

in means error  Variance limit limit Z-Value p-Value
Wei et al, [2017] -2.400 1.819 3310 -5966 1.166 -1.319 0.187 —
Tang et al, [2020] -5.560 1.204 1.449 -7919 -3201 -4619 0.000
Sulaj et al, [2022] -2.100 2.605 6.788 -7.206 3.006 -0.806 0.420 i
Mishra et al, [2023] 0.600 1.907 3638 -3138 4338 0315 0.753 —i—
Van der et al, [2024] (a) -1.000 2.991 8946 6862 4862 -0334 0.738 i
Van der et al, [2024] (b) -2.000 3.004 9.023 -7.887 3.887 -0666 0.506 L
Van den et al, [2024] -1.100 1.546 2391 -4131 1931 -0.711 0477 ——

-2.263 0.969 0939 -4162 -0.364 -2336 0.020 0
-10.00 -5.00 0.00 5.00 10.00
Favours FMD Favours control

Fig. 6 Forest plot detailing weighted mean differences and 95% confidence interval for the impact of FMD on Diastolic Blood Pressure (mmHg)
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(WMD=0.486 kg, 95% CIL: 0.032, 1.939, p=0.043; and
WMD =0.491 kg, 95% CI: 0.031, 1.956, p =0.043, respec-
tively). Excluding studies by Stefanie de Groot et al
[27] and Wei [21] from meta-analysis resulted in a non-
significant effect of FMD on IGF-1 (WMD = -11.565
ng/ml, 95% CIL: -30.743, 7.613, p=0.237; and WMD =
-13.255 ng/ml, 95% CI: -37.880, 11.370, p=0.291, respec-
tively). SBP and DBP meta-analyses were also sensitive
to the study by Tang et al. [23], resulting in a non-sig-
nificant reduction in SBP (WMD = -2.485 mmHg, 95%
CL -5.512, 0.543, p=0.108), and DBP (WMD = -1.218
mmHg, 95% CI: -2.896, 0.459, p=0.155). Also, the meta-
analysis of CRP was sensitive to the exclusion of the Van
den et al. [10] study, resulting in a significant reduction
following FMD (WMD = -0.577 mg/l, 95% CI: —-1.139,
-0.015, p=0.044). All figures for sensitivity analyses are
presented in the Supplemental File.

Subgroup analysis

In order to identify sources of heterogeneity and bet-
ter assess the effects of FMD in different populations,
subgroup analyses were performed (Table S3). Sub-
group analysis of diabetic group suggested a signifi-
cant reduction in body weight (WMD =-6.64 kg, 95%
CI: -12.0, -1.22, p=0.016), waist circumference (WMD
= -6.72 cm, 95% CI: -10.83, -2.61, p=0.001), BMI
(WMD =-2.47 kg/m2, 95% CI: -4.08, -0.86, p=0.003),
SBP (WMD=-6.01 mm Hg, 95% CI: -9.33, -2.69,
p<0.001), and DBP (WMD = -2.86 mm Hg, 95% CL
-5.14, -0.58, p=0.014) following FMD. Among non-
diabetic individuals, only a significant reduction was
observed in body weight (WMD=0.88 kg, 95% CI: 0.01,
1.75, p=0.045) following FMD (Table S3).

Subgroup analysis based on BMI suggested a significant
decrease in BMI (WMD=-0.96 kg/m2, 95% CI: -1.77,
-0.15, p=0.020), SBP (WMD = -4.79 mm Hg, 95% CL
-9.06, -0.51, p=0.028), CRP (WMD = -0.59 mg/L, 95%
CI: -1.18,-0.01, p = 0.046), and FBS (WMD = -3.30 mg/d],
95% CI: -6.20, -0.40, p=0.025) among participants with
BMI < 30 kg/m?. However, the meta-analysis effects were
not significant for the effect of FMD on any risk factors
in a subgroup of participants with BMI>30 kg/m? (Table
S3).

Publication bias

Funnel plots suggested a visual asymmetry in the meta-
analyses of FMD effects on cardiovascular risk factors
(see Supplemental File). Egger’s regression tests also
suggested a significant publication bias for the effects of
FMD on body weight (p =0.002), fat-free mass (p =0.027),
and fat mass (p=0.025). However, no evidence of publi-
cation bias for the effect of FMD on other risk factors was
reported (Egger’s regression test p-values>0.05). Simi-
larly, no publication bias was observed based on Begg’s
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test (p-values > 0.05), with the exceptions of fat-free mass
(p=0.027) and TC (p=0.035) (Table S4).

Discussion

The findings of this systematic review and meta-analysis
suggested that FMD cycles may significantly reduce some
cardiovascular risk factors including HbA1lc, IGF-1, SBP,
and DBP. It may also result in a slight but non-significant
increase in fat-free mass.

Literature suggests FMD may lead to a reduction in
insulin secretion and an increase in glucagon [1, 6, 7, 9],
which can facilitate lipolysis and gluconeogenesis, there-
fore, preventing the utilization of muscle protein as an
energy source [1, 6, 7, 9]. During periods of fasting or
fasting-mimicking diets, growth hormone levels tend to
increase, which facilitates the preservation of lean body
mass and enhances fat metabolism [10]. Growth hor-
mone plays a role in the preservation of muscle proteins
by facilitating the oxidation of fat and the utilization of
stored fat reserves [1]. FMD induces a state of ketosis,
whereby the body shifts from utilizing glucose as its pri-
mary fuel source to relying on ketones derived from fatty
acids. The provision of ketones serves as an alternative
energy source for the brain and muscles and helps pre-
serve muscle proteins and maintain fat-free mass [1].
Also, the low protein in FMD triggers adaptive responses
that prioritize the preservation of muscle protein [6]. This
results in the body becoming more efficient at recycling
amino acids and reducing protein breakdown, thus main-
taining fat-free mass. FMD is also capable of reducing
systemic inflammation and oxidative stress [21]. Chronic
inflammation and oxidative stress can contribute to the
development of muscle wasting and a reduction in fat-
free mass. By reducing inflammation and oxidative stress,
EMD helps to safeguard muscle tissue and maintain lean
body mass. Also, FMD activates autophagy, a cellular
process where damaged proteins and organelles are bro-
ken down and recycled. This not only helps in clearing
out cellular debris but also ensures that cells maintain
their function and integrity. Efficient autophagy contrib-
utes to muscle health by preventing the accumulation of
damaged proteins and supporting muscle maintenance
during periods of low nutrient availability [5, 6, 21, 27].

The findings of this study also suggested that FMD
results in a reduction in HbAlc and IGF-1 levels. Evi-
dence indicates that the reduction observed in HbAlc
levels following FMD may be more pronounced among
individuals with elevated blood glucose levels or an
increased risk of developing type 2 diabetes [1, 7, 20].
However, this was not reported in the subgroup of dia-
betes individuals in the current meta-analysis. The reduc-
tion in caloric intake and carbohydrate consumption
during FMD periods can result in a decrease in blood
glucose levels, which subsequently leads to a reduction
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in the glycation of hemoglobin over time [5], therefore
potentially helping with HbA1lc regulations. The reduc-
tion in circulating levels of IGF-1 reported from this
meta-analysis could be attributed to the decreased pro-
tein intake during fasting mimicking periods, particu-
larly the intake of amino acids such as methionine, which
have been demonstrated to stimulate IGF-1 production
[22]. EMD exerts influence over a number of pathways
associated with the processes of aging and disease, most
notably through the downregulation of the growth hor-
mone/IGF-1 axis [26]. A reduction in IGF-1 levels has
been linked to a decline in cellular proliferation and an
increase in autophagy, a cellular cleansing process that
eliminates damaged cells and enhances cellular health
[25].

The findings also suggested that FMD can reduce blood
pressure. This can have significant benefits for individuals
with hypertension or high blood pressure. FMD protocols
typically restrict sodium intake [7], which can contribute
to a reduction in blood volume and a subsequent lower-
ing of blood pressure. FMD may also improve endothelial
function, and facilitate nitric oxide production [7]. Nitric
oxide is a vasodilator, facilitating relaxation and dilation
of blood vessels and reducing blood pressure [1]. FMD
may also reduce markers of inflammation [1]. Lower
inflammation levels can enhance endothelial function,
which is crucial for NO production [25]. In fact, FMD
mimics the effects of fasting, which can lead to metabolic
adaptations that enhance the production of NO. Also,
the anti-inflammatory effects of FMD may contribute to
a reduction in vascular inflammation, which in turn may
result in a lowering of systolic blood pressure [1, 7, 25].
Additionally, FMD has the potential to impact the renin-
angiotensin-aldosterone system (RAAS), a hormonal
regulatory mechanism that oversees blood pressure and
fluid balance. By modulating this system, FMD can help
reduce vascular resistance and lower blood pressure [1,
7].

A meta-analysis examining the effects of the ketogenic
diet in a diabetic population found that the diet can have
a positive impact on lipid profiles. However, it did not
show significant effects on blood sugar control or weight
management [28]. The fasting mimicking diet (FMD), in
line with the DASH diet, has the potential to lower blood
pressure. This study examining the effect of the FMD,
combined with a previous study, has effectively shown
that adherence to the DASH diet can lead to significant
reductions in blood pressure [29].

This study has several strengths. Major cardiovascu-
lar risk factors were investigated in this meta-analysis
and subgroup analyses. However, some limitations exist.
There were variations in the intervention groups and the
control groups’ diets across studies. Moderate to high
heterogeneities were also observed in the meta-analysis
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of most risk factors. While subgroup and sensitivity anal-
yses aimed to investigate the source of heterogeneity, the
variation and heterogeneity observed may limit the com-
parability of findings across studies.

Conclusion

This meta-analysis suggests the Fasting Mimicking Diet
(EMD) may significantly reduce HbAlc, IGF-1, SBP, and
DBP levels in adults. However, the effect of FMD on other
cardiovascular risk factors remains uncertain. Further
research is warranted to investigate the potential long-
term effect of FMD on cardiovascular risk factors and the
underlying mechanisms of action in diverse populations.
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