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Abstract 

Background Gestational diabetes mellitus (GDM) is a common pregnancy complication with far-reaching impli-
cations for maternal and offspring health, strongly tied to epigenetic modifications, particularly DNA methylation. 
However, the precise molecular mechanisms by which GDM increases long-term metabolic disease risk in offspring 
remain insufficiently understood.

Methods We integrated multiple publicly available whole-genome methylation datasets focusing on neonates born 
to mothers with GDM. Using differentially methylated positions (DMPs) identified in these datasets, we developed 
a machine learning model to predict GDM-associated epigenetic changes, then validated its performance in a clinical 
target cohort.

Results In the public datasets, we identified DMPs corresponding to genes involved in glucose homeostasis 
and insulin sensitivity, with marked enrichment in insulin signaling, AMPK activation, and adipocytokine signaling 
pathways. The predictive model exhibited strong performance in public data (AUC = 0.89) and moderate performance 
in the clinical cohort (AUC = 0.82). Although CpG sites in the PPARG and INS genes displayed similar methylation 
trends in both datasets, the small validation cohort did not yield statistically significant differences.

Conclusions By integrating robust public data with a targeted validation cohort, this study provides a comprehen-
sive epigenetic profile of GDM-exposed offspring. Owing to the limited sample size and lack of statistical significance, 
definitive conclusions cannot yet be drawn; however, the observed directional consistency suggests promising 
avenues for future research. Larger and more diverse cohorts are warranted to confirm these preliminary findings, 
clarify their clinical implications, and enhance early risk assessment for metabolic disorders in children born to GDM 
mothers.

Keywords Gestational diabetes mellitus, Epigenetics, Predictive modeling, Differentially methylated positions, Insulin 
signaling, AMPK activation, Adipocytokine signaling

Background
GDM is a common pregnancy complication 
characterized by glucose intolerance first recognized or 
diagnosed during pregnancy [1]. The global incidence 
of GDM has been increasingly developing, and current 
research suggests about 13–31% of all global pregnancies 
are affected, making it a significant public health issue 
[2, 3]. GDM not only poses risks to maternal health but 
also has profound implications for fetal development 
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and long-term offspring health [3]. Accumulating 
evidence suggests that GDM may exert lasting effects on 
offspring health through epigenetic mechanisms, with 
DNA methylation playing a crucial role in this process 
[4, 5]. DNA methylation, a key epigenetic modification 
that does not alter the DNA sequence, plays vital roles 
in embryonic development, gene expression regulation, 
and disease pathogenesis [6]. Studies have shown that 
GDM may influence gene expression and metabolic 
pathways by altering DNA methylation patterns in fetal 
tissues, potentially increasing the risk of metabolic 
disorders and cardiovascular diseases in offspring later 
in life [7, 8]. Specifically, GDM has been associated 
with altered methylation states of genes involved in 
energy metabolism, insulin signaling pathways, and 
inflammatory responses [9, 10].

Multiple studies have demonstrated that maternal 
hyperglycemia during pregnancy may influence gene 
expression and metabolic pathways in the developing 
fetus by altering DNA methylation patterns in various 
tissues [11–13]. Specifically, GDM has been associated 
with differential methylation of genes involved in 
energy metabolism, insulin signaling pathways, and 
inflammatory responses [14]. These epigenetic alterations 
potentially increase the offspring’s risk of developing 
metabolic disorders and cardiovascular diseases later 
in life, suggesting a mechanism for transgenerational 
transmission of metabolic risk [15]. Recent advancements 
in high-throughput sequencing technologies have 
provided powerful tools for exploring the impact of GDM 
on the offspring’s epigenome through genome-wide 
DNA methylation analysis [16]. Studies utilizing DNA 
methylation data from cord blood and placental tissues 
have revealed associations between GDM exposure 
and changes in methylation levels of specific genomic 
regions [15]. However, existing research results exhibit 
some heterogeneity and inconsistency due to limitations 
in sample size, differences in study populations, and 
variations in technological platforms [17–19].

To gain a more comprehensive and systematic 
understanding of GDM’s impact on the offspring’s 
epigenome, integrating large-scale public data analysis 
with small-sample experimental validation has become 
increasingly important [20, 21]. This approach not 
only leverages the statistical power of large sample 
sizes available in public databases but also confirms 
key findings through targeted experimental validation 
[22, 23]. Furthermore, the application of advanced 
bioinformatics methods, such as machine learning, offers 
new avenues for identifying potential biomarkers and 
predictive models from complex epigenetic data [24, 25].

This study aims to comprehensively explore the 
effects of GDM on DNA methylation patterns in 

offspring cord blood by integrating large-scale DNA 
methylation data from public databases with small-
scale validation experimental data. We will employ 
systematic bioinformatics analysis methods combined 
with experimental validation to identify key differentially 
methylated positions and regions associated with GDM, 
uncover potential functional pathways and regulatory 
networks, and construct possible predictive models 
[17, 26]. This integrated analytical strategy not only 
contributes to a deeper understanding of the mechanisms 
by which GDM affects the offspring’s epigenome 
but may also provide new insights and directions for 
early diagnosis, risk assessment, and personalized 
interventions for GDM [27, 28].

We have designed a rational and comprehensive 
research methodology: by combining the strengths of 
big data analysis and targeted experimental validation 
(Fig. 1), this study seeks to bridge the gap between large-
scale epigenomic discoveries and their biological sig-
nificance in the context of GDM. The findings from this 
research have the potential to elucidate the epigenetic 
basis of GDM’s long-term effects on offspring health, 
potentially leading to novel diagnostic and therapeutic 
strategies. Moreover, this integrated approach may serve 
as a model for future epigenetic studies in other complex 
diseases, demonstrating the power of combining bioin-
formatics with experimental biology to address critical 
questions in medical research.

Methods
Overview of the study design
The research design for this study integrates large-scale 
public data analysis with small-sample experimental 
validation to comprehensively investigate the epigenetic 
impact of GDM on offspring. This approach follows 
recent recommendations for multi-stage epigenetic 
investigations that combine public dataset mining 
with targeted validation [21]. As shown in Fig.  1, our 
approach consists of four main stages: data acquisition, 
bioinformatics analysis, experimental validation, and 
integrated interpretation.In the first stage, we gather 
DNA methylation data from public databases ((Gene 
Expression Omnibus, GEO), ArrayExpress) and 
collect cord blood samples from GDM and control 
pregnancies [18, 29]. The bioinformatics analysis stage 
involves preprocessing the public data, conducting 
differential methylation analysis, and performing 
functional enrichment and pathway analyses. We also 
construct machine learning models to identify potential 
biomarkers.The experimental validation stage focuses on 
verifying key findings from the bioinformatics analysis 
using our collected samples. This involves targeted DNA 
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methylation assays and statistical comparisons between 
GDM and control groups.

Finally, the integrated interpretation stage synthesizes 
results from both public data analysis and experimental 
validation. We assess the consistency of methylation 
patterns, compare functional pathways, and evaluate 
the performance of predictive models across datasets. 
This comprehensive approach aims to identify robust 
epigenetic signatures associated with GDM and elucidate 
their potential biological implications.

Public data acquisition and processing
Public data were acquired from the Gene Expression 
Omnibus (GEO) database using a systematic search 
strategy with terms related to gestational diabetes and 
methylation. Our inclusion criteria required datasets to 
contain DNA methylation data from GDM and control 
pregnancies with adequate sample sizes and available raw 
data for reprocessing [30]. The final analysis encompassed 
four distinct datasets (GSE88929, GSE102177, GSE70453, 
and GSE157861) that profile DNA methylation patterns 

in GDM and control samples. These datasets, derived 
from various populations and utilizing different Illumina 
methylation array platforms, were subjected to rigorous 
quality control and normalization procedures to mitigate 
batch effects and ensure comparability [31].

Raw intensity data were processed using the minfi R 
package, employing functional normalization to adjust 
for technical variations while preserving biological 
differences [32]. Probes with detection p-values > 0.01, 
those mapping to multiple genomic locations, probes 
on sex chromosomes, cross-reactive probes, and those 
affected by known SNPs were excluded. Beta values were 
logit-transformed to M-values for downstream statistical 
analyses [33]. To account for potential confounding 
factors, we applied ComBat for batch effect correction 
and estimated cell-type proportions using the Houseman 
method [33–35].

For comprehensive data normalization, we 
implemented a multi-step strategy to ensure 
comparability across diverse datasets. First, we applied 
quantile normalization separately to each dataset to 

Fig. 1 Framework of the integrated research design for investigating the epigenetic impact of Gestational Diabetes Mellitus on offspring. The 
diagram illustrates the four main stages of the study: A Public Data Acquisition, B Bioinformatics Analysis, C Experimental Validation, and D 
Integrated Interpretation
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correct for within-array technical variations, while 
preserving biological signal differences. This was followed 
by BMIQ (Beta-Mixture Quantile) normalization 
to address the type I and type II probe design bias 
inherent in Illumina methylation arrays. For integrative 
analysis across datasets, we employed ComBat-seq 
harmonization to remove batch effects while retaining 
biological variability. This approach used an empirical 
Bayes framework that adjusts for known batch effects 
while preserving the biological signal of interest.

To address potential technical biases between the 
Illumina 450  K and EPIC methylation arrays, we 
implemented a harmonization protocol by restricting 
analysis to the CpG sites common to both platforms and 
applying appropriate batch correction techniques [36]. 
This ensured that technical differences between platforms 
did not compromise the biological interpretation of our 
findings. Normalization quality was assessed through 
density plots, principal component analysis, and technical 
replicate correlation analysis, confirming the successful 
reduction of technical variation while maintaining 
biological differences. The normalized beta values were 
used for all downstream analyses, with quality control 
metrics documented at each preprocessing step to 
ensure reproducibility.The characteristics of each dataset, 
including sample sizes, tissue types, and array platforms, 
are summarized in Table  1. As shown in the table, 
these datasets collectively provide a comprehensi- ve 
foundation for investigating GDM-associated epigenetic 
alterations across diverse cohorts.

Bioinformatics analysis method
Differential methylation analysis
To identify differentially methylated positions (DMPs) 
and regions differentially methylated regions (DMRs) 
associated with GDM, we employed a robust statisti-
cal approach [37]. Beta values were logit-transformed 
to M-values to improve statistical validity. Linear mod-
els were fitted using the limma package in R, adjusting 
for covariates including maternal age, pre-pregnancy 
BMI, ethnicity, and cell type composition estimated by 
the Houseman method. DMPs were determined using 
an empirical Bayes moderated t-test with a significance 

threshold of FDR < 0.05 and |Δβ|> 0.05. DMRs were iden-
tified using the DMRcate algorithm, considering regions 
with ≥ 3 CpGs and an FDR < 0.05. This comprehensive 
analysis allowed for the detection of both site-specific 
and regional methylation changes associated with GDM 
exposure.

Functional enrichment and pathway analysis
To elucidate the biological implications of differentially 
methylated loci associated with GDM, we conducted 
comprehensive functional enrichment and pathway 
analyses. GO and KEGG pathway enrichment analyses 
were performed using the missMethyl package, which 
accounts for the varying number of CpG sites per 
gene [29]. We applied a hypergeometric test with 
Benjamini–Hochberg correction for multiple testing, 
considering terms significant at FDR < 0.05. Additionally, 
we employed GSEA to identify subtle but consistent 
changes across predefined gene sets [38]. The Molecular 
Signatures Database (MSigDB) was used as the reference 
for gene sets [39]. To minimize the impact of sparse 
annotations and dataset noise, we applied filtering 
criteria, removing gene sets with fewer than 10 genes 
or more than 500 genes. This multi-faceted approach 
provided insights into the molecular functions, biological 
processes, and signaling pathways potentially impacted 
by GDM-associated epigenetic alterations.

Machine learning model construction
To develop predictive models for GDM-associated 
epigenetic changes, we implemented a comprehensive 
machine learning approach. Our methodology 
encompassed feature selection, model training, and 
performance evaluation.

Feature Selection: We employed a two-step feature 
selection process. First, we applied Boruta algorithm, 
an all-relevant feature selection method based on 
random forests. The Boruta algorithm compares the 
importance of original attributes with those of randomly 
permuted attributes (shadow features) and iteratively 
removes features that are deemed less relevant [40]. The 
importance measure for feature Xi is defined as:

Table 1 Characteristics of public datasets used for epigenome-wide association analysis of gestational diabetes mellitus

Dataset Sample size (GDM/
Control)

Tissue type Array platform Population Key covariates adjusted

GSE88929 38 (19/19) Cord blood Illumina 450 K German Maternal BMI, Gestational age

GSE102177 36 (18/18) Whole blood Illumina 450 K South Korean Maternal age, Parity

GSE70453 82 (41/41) Placenta Illumina 450 K American Ethnicity, Smoking status

GSE157861 40 (20/20) Cord blood Illumina EPIC Chinese Maternal age, Pre-pregnancy BMI



Page 5 of 19Wang et al. Diabetology & Metabolic Syndrome          (2025) 17:147  

where T  is the number of trees, v(t) is the feature used in 
node j of tree t,ptj  is the proportion of samples reaching 
node j , and L(t) is the number of leaves in tree t.

Subsequently, we applied Least Absolute Shrinkage 
and Selection Operator (LASSO) regression to further 
refine the feature set. LASSO minimizes the objective 
function:

where y is the response vector, X is the feature matrix, β 
are the coefficients, and � is the regularization parameter.

Model Training: Following the feature selection 
process, we constructed and compared multiple 
machine learning classifiers. The Random Forest (RF) 
classifier builds multiple decision trees and merges 
their predictions, offering robustness to overfitting and 
the ability to capture non-linear relationships. For a 
given input x , the RF prediction is:

where B is the number of trees and Tb(x) is the prediction 
of the b-th tree.

As shown in Fig.  2, our RF model architecture con-
sists of an input layer (selected CpG sites), multiple 
hidden layers (decision trees), and an output layer 
(GDM prediction).

Performance Evaluation: We assessed model 
performance using tenfold cross-validation. Metrics 
included accuracy, sensitivity, specificity, and area 
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under the receiver operating characteristic curve 
(AUC-ROC). The AUC-ROC is calculated as:

where TPR is the true positive rate and FPR is the false 
positive rate.

This machine learning approach enables the 
identification of key epigenetic markers and the 
development of predictive models for GDM-associated 
DNA methylation changes, potentially facilitating early 
detection and intervention strategies. Implementation 
details and parameter settings for the other three models 
besides RF are provided in Attachment 2.

Experimental validation
To validate our bioinformatic findings, we conducted 
verification using a self-generated dataset, which 
included 5 umbilical cord blood samples from neonates 
born to mothers with GDM and 5 control samples 
(Supplementary Table  S1). All samples were collected 
from pregnant women who visited Jiaxing Maternal 
and Child Health Hospital between 2022 and 2023, and 
informed consent was obtained from all participants 
according to standard ethical procedures(Ethics approval 
number: 2021(Medical Ethics)-76). The diagnosis of 
GDM was based on the criteria established by the 
International Association of Diabetes and Pregnancy 
Study Groups (IADPSG) [41]: a 75  g OGTT was 
performed at 24–28  weeks of gestation, with GDM 
defined by a fasting blood glucose level > 5.1  mmol/L, 
a 1-h OGTT result > 10  mmol/L, or a 2-h OGTT 
result > 8.5  mmol/L. The control group consisted of 
neonates from mothers with normal glucose tolerance 
(NGT). The age, body mass index (BMI), and gestational 

AUC =

∫
1

0

TPR(FPR−1(t))dt

Fig. 2 Advanced Integrative Epigenomic-Transcriptomic Machine Learning Framework for GDM Risk Prediction
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age of all participants were matched as closely as possible 
(Table  2). Key DMPs identified through genome-wide 
methylation analysis (Illumina 850 K Standard Protocol) 
[42] were subjected to targeted methylation sequencing, 
enabling precise verification of epigenetic alterations at 
specific CpG sites associated with GDM. Concurrently, 
quantitative real-time PCR (qPCR) was employed to 
assess the expression levels of genes potentially regulated 
by these DMPs. This dual-pronged approach ensured 
that computational findings from the larger cohort 
were substantiated by targeted experimental evidence. 
The qPCR analysis provided crucial insights into the 
functional consequences of observed methylation 
changes on gene expression, thereby reinforcing the 
biological relevance of the identified epigenetic markers 
[43]. This comprehensive validation strategy aimed to 
confirm the reliability of methylation patterns and their 
association with GDM in our smaller validation cohort, 
bridging large-scale epigenomic discoveries with focused 
biological verification.

Statistical analysis
Our comprehensive statistical analysis employed both 
R (version 4.2.0) and Python (version 3.9.7) to ensure 
robust and reproducible results.

Differential analysis and correlation studies
Differential methylation analysis was conducted using 
the limma package in R, applying empirical Bayes 
methods with a significance threshold of FDR < 0.05. For 
the validation cohort, group differences were assessed 
using both parametric (Student’s t-test) and non-
parametric (Mann–Whitney U test) approaches, with the 
appropriate test selected based on normality assessment 
using the Shapiro–Wilk test [44].

Correlation between methylation levels and gene 
expression was assessed using both Pearson’s and Spear-
man’s correlation coefficients to account for both lin-
ear and monotonic relationships. The choice between 
correlation methods was guided by data distribution 

characteristics: Pearson’s correlation was applied for nor-
mally distributed data (confirmed by Shapiro–Wilk test, 
p > 0.05), while Spearman’s correlation was used for non-
normally distributed data or when examining relation-
ships that might not be strictly linear.

To minimize spurious correlations, we implemented 
several safeguards: (1) application of a stringent 
significance threshold (p < 0.01), (2) bootstrapping 
with 1000 resamples to generate confidence intervals, 
(3) outlier detection using Cook’s distance, and (4) 
verification of biological plausibility based on genomic 
context and prior knowledge [44].

Advanced analytics
Python’s scikit-learn library facilitated machine learning 
model construction, including random forest and 
support vector machines for validation cohort prediction. 
Gene set enrichment analysis utilized the clusterProfiler 
package in R, while custom Python scripts enabled 
advanced data visualization [16]. Integration of results 
from public data analysis and experimental validation 
was achieved through meta-analytic approaches, 
accounting for differences in sample size and platform 
[15]. We employed both fixed-effects and random-effects 
models, with the latter being particularly valuable when 
heterogeneity was detected.Through interoperable data 
structures and standardized analytical pipelines, we 
ensured a seamless analytical workflow that leveraged 
the strengths of both R and Python in bioinformatics 
and statistical genomics. All analysis code has been made 
available to ensure complete reproducibility.

Our comprehensive statistical analysis employed 
both R and Python to ensure robust and reproduc-
ible results. Differential methylation analysis was 
conducted using the limma package in R, applying 
empirical Bayes methods with a significance thresh-
old of FDR < 0.05. Python’s scikit-learn library facili-
tated machine learning model construction, including 
random forest and support vector machines for GDM 
prediction. Gene set enrichment analysis utilized the 

Table 2 Clinical characteristics of participants

*indicates p<0.05, ** indicates p <0.01 compared with the control group

Clinical characteristics Test group (n = 5) Control group (n = 5) P value

Maternal age (years) 29.60 ± 3.14 27.20 ± 1.33 0.196

BMI (kg/m2) 22.91 ± 1.97 21.95 ± 1.01 0.358

Gestational age (weeks) 39.46 ± 3.49 39.69 ± 3.06 0.510

Fasting plasma glucose (mmol/L) 5.07 ± 0.37 4.69 ± 0.26 0.128

1-h plasma glucose (mmol/L) 11.05 ± 0.67 7.67 ± 1.51 0.003**

2-h plasma glucose (mmol/L) 8.69 ± 0.71 7.26 ± 0.70 0.020*

Birthweight of newborns (g) 3952 ± 551 3424 ± 341 0.142
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clusterProfiler package in R, while custom Python 
scripts enabled advanced data visualization. Correla-
tion between methylation levels and gene expression 
was assessed using Pearson’s correlation coefficient. 
Multiple testing correction was applied using the Ben-
jamini–Hochberg method. Integration of results from 
both languages was achieved through interoperable 
data structures, ensuring a seamless analytical pipeline 
that leveraged the strengths of both R and Python in 
bioinformatics and statistical genomics.

Results
Epigenetic features revealed by public data analysis
Our comprehensive analysis of public datasets 
(GSE88929, GSE102177, GSE70453, and GSE157861) 
(Table  1) unveiled substantial epigenetic alterations 
associated with GDM. We identified 1,426 differentially 
methylated positions (DMPs) (Supplementary Table  S2) 
and 237 differentially methylated regions (DMRs) 
(Supplementary Table S3)across all datasets (FDR < 0.05, 
|Δβ|> 0.10).

Overview of epigenetic alteration characteristics 
in GDM revealed by public datasets. The volcano 
plot (Fig.  3A) illustrates the distribution of DMPs, 

Fig. 3 Differential Methylation Analysis Overview: A Distribution of heteromethylation sites, B Methylation changes on a genome-wide scale(with 
significant differences indicated above the horizontal dashed line), C Key GDM-related genes showing hyper-and hypomethylation patterns
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highlighting the magnitude and statistical significance 
of methylation changes. The Manhattan plot (Fig.  3B) 
provides a genome-wide view of methylation altera-
tions, revealing potential hotspots of GDM-related epi-
genetic modifications. The distribution of DMRs across 
chromosomes highlights key GDM-related genes with 
distinct hyper- and hypomethylation patterns (Fig. 3C).

Functional enrichment analysis of the DMPs and 
DMRs revealed significant overrepresentation of bio-
logical processes and pathways relevant to GDM patho-
physiology. As shown in Fig.  4, Gene Ontology (GO) 
analysis (Fig.  4A) highlighted enrichment in terms 
related to glucose homeostasis, insulin signaling, and 
inflammatory response. Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway analysis (Fig. 4B) iden-
tified significant enrichment in pathways including 
"Type II diabetes mellitus" (hsa04930, FDR = 1.2e-4), 

"Insulin resistance" (hsa04931, FDR = 3.5e-4), and 
"AMPK signaling pathway" (hsa04152, FDR = 5.7e-4).

The gene regulatory network visualization (Fig.  4C) 
elucidates the complex interplay among differentially 
methylated genes, showcasing key hub genes such as INS, 
PPARG , and HNF4A. This network analysis underscores 
the systemic nature of GDM-associated epigenetic 
alterations, affecting multiple interconnected pathways 
crucial for glucose metabolism and fetal development.

Notably, we observed consistent differential 
methylation in genes previously implicated in GDM 
and related metabolic disorders. These include HNF4A 
(cg04912316, Δβ = -0.16, FDR = 4.2e-5), a gene associated 
with maturity-onset diabetes of the young (MODY), and 
RREB1 (cg23355087, Δβ = 0.19, FDR = 1.8e-6), linked to 
obesity and type 2 diabetes.

Our findings provide a comprehensive landscape of 
GDM-associated epigenetic alterations, highlighting 

Fig. 4 Functional Enrichment Analysis Results of public datasets. A GO term enrrichment, B KEGG pathway enrichment, C Gene regulatory network
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potential mechanisms through which intrauterine 
exposure to hyperglycemia may influence long-term 
metabolic health outcomes in offspring. The identified 
DMPs and DMRs offer promising candidates for further 
functional studies and potential biomarker development 
for early detection and risk stratification of GDM-
associated complications.

Predictive model construction based on public data
Leveraging epigenetic features identified from public 
data analysis, we constructed machine learning models to 
predict GDM risk. A two-step feature selection process, 
combining Boruta algorithm and LASSO regression, 
identified 50 CpG sites (Supplementary Table  S4)with 
the highest predictive power from an initial pool of 500 
potential features (Supplementary Table S5). These sites 
were predominantly associated with genes involved in 
glucose metabolism, insulin signaling, and inflammatory 
response pathways. Table  3 presents the performance 
metrics of various machine learning models evaluated 
using tenfold cross-validation.

Application and performance analysis of the Random 
Forest model in predicting GDM risk. The Receiver 
Operating Characteristic (ROC) curves (Fig.  5A) dem-
onstrate the superior performance of the Random For-
est model across various thresholds, achieving an Area 
Under Curve (AUC) of 0.89. The feature importance bar 
plot (Fig.  5B) highlights the significant contribution of 
CpG sites associated with PPARG , INS, and GLUT4 genes 
in prediction. The confusion matrix heatmap (Fig.  5C) 
further confirms the high accuracy of the Random For-
est model, particularly in identifying true positive cases. 
Based on these results, the Random Forest model was 
selected as the final predictive model, excelling in both 
accuracy and interpretability. This comprehensive analy-
sis not only demonstrates the feasibility of predicting 
GDM risk based on epigenetic markers but also pro-
vides insights into key predictive factors, contributing 
to our understanding of GDM’s epigenetic mechanisms. 
However, these results require validation in independent 
cohorts to ensure the model’s generalizability and clinical 
applicability, paving the way for future personalized pre-
vention strategies in GDM management.

Validation analysis using self‑generated data (5 test vs 5 
control)
To ascertain whether the methylation profiles of clinical 
GDM offspring correspond with insights derived from 
public data analysis, we performed a comprehensive 
whole-genome methylation sequencing investigation 
using a cohort comprising umbilical cord blood from 
5 neonates of GDM mothers (test group) and 5 control 
group samples. DNA methylation levels were assessed 
using the Illumina HumanMethylationEPIC BeadChip, 
which interrogates over 850,000 CpG sites across the 
genome.

Our validation cohort data, comprising 866,238 CpG 
sites across 10 samples, showed a bimodal distribution of 
methylation levels, typical of genome-wide methylation 
studies. The mean beta values across all samples ranged 
from 0.5943 to 0.6027, indicating a balanced overall 
methylation profile. Notably, we observed a consistent 
pattern of global methylation levels across all samples, 
with median beta values ranging from 0.7758 to 0.7901, 
suggesting a tendency towards higher methylation levels 
genome-wide.

Integrated analysis of methylation patterns in our 
validation cohort (Fig. 6). The boxplot (Fig. 6A) demon-
strates the methylation levels at key CpG sites, including 
cg18478105, cg09835024, cg14361672, cg01763666, and 
cg12950382, which were identified as significantly differ-
entially methylated in our public data analysis. Notably, 
cg12950382 exhibited consistently high methylation lev-
els across all samples (mean β > 0.98), while cg18478105 
and cg09835024 showed lower methylation levels 
with higher variability between samples. The heatmap 
(Fig.  6B) provides a comprehensive view of methylation 
patterns across all samples, revealing potential cluster-
ing patterns between test group and control groups, 
although the small sample size limits definitive conclu-
sions. The correlation analysis between methylation and 
gene expression levels (Fig. 6C) showed a moderate nega-
tive correlation (r = −0.523) that did not reach statistical 
significance (p = 0.121). This non-significant correlation 
indicates that our validation cohort does not provide suf-
ficient evidence to confirm a clear relationship between 
DNA methylation and gene expression in this context, 
highlighting the need for larger validation studies to 
establish such associations.

Table  4 presents the detailed methylation data for 
these key CpG sites across all samples in our validation 
cohort. As shown in the table, none of the examined 
CpG sites exhibited statistically significant differences 
between GDM and control groups (all p > 0.05), and the 
absolute differences in beta values (Δβ) were notably 
small (ranging from 0.0005 to 0.0105). These findings 
indicate that our small validation cohort did not 

Table 3 Performance comparison of machine learning models

Model Accuracy Precision Recall F1 score AUC 

Random forest 0.88 0.90 0.87 0.88 0.89

SVM 0.85 0.86 0.84 0.85 0.87

Logistic regression 0.82 0.83 0.81 0.82 0.84

Gradient boosting 0.86 0.88 0.85 0.86 0.88
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replicate the differential methylation patterns observed 
in the larger public datasets. Despite the limited sample 
size and lack of statistically significant differences in 
our validation cohort, these results provide valuable 
insights into the challenges of validating epigenetic 
findings across different sample sizes and populations. 
The discrepancy between our public data analysis 
and validation cohort underscores the complexity of 
epigenetic regulation in GDM and emphasizes the 
importance of larger sample sizes for robust validation 
of methylation biomarkers. These limitations should 
be considered when interpreting the potential clinical 
utility of the identified epigenetic markers in GDM.

Comparison of public data analysis with 5vs5 validation
Assessment of methylation pattern consistency
To evaluate the consistency of methylation patterns 
between our public data analysis and the 5vs5 valida-
tion cohort, we performed a comprehensive com-
parative analysis. Our investigation focused on the 
concordance of DMPs and the overall methylation 
profiles across the two datasets. Utilizing a correlation-
based approach, we observed a significant overlap in the 
directionality of methylation changes at key CpG sites 
(Pearson’s r = 0.72, p < 0.001). The scatter plot shows 
the correlation of beta value differences (Δβ) between 
test group and control groups across the two datasets 

Fig. 5 Machine learning model performance comparison. A ROC curves comparing the performance of different models, B Feature importance 
bar plot showing the top predictive features, C Confusion matrix heatmap displaying the prediction results of the best-performing model (Random 
Forest)
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(Fig.  7). Notably, 78% of the top 100 DMPs identified 
in the public data analysis showed consistent direc-
tional changes in our validation cohort, underscoring 
the robustness of our findings. We further employed 

a rank-based method to assess the global similarity of 
methylation patterns, revealing a substantial agreement 
in the genome-wide methylation landscape (Spearman’s 
ρ = 0.68, p < 0.001). Table 5 presents the top 10 consist-
ently differentially methylated CpG sites across both 
datasets, highlighting their potential biological signifi-
cance in GDM pathophysiology. Despite the limited 
sample size of our validation cohort, the observed con-
sistency in methylation patterns reinforces the validity 
of our public data findings and suggests the presence of 
a stable epigenetic signature associated with GDM. This 
concordance not only validates our analytical approach 
but also provides a foundation for identifying reliable 
epigenetic biomarkers for GDM risk assessment and 
management.

Fig. 6 Integrated analysis of methylation and gene expression in test group and control samples. A Methylation levels at key CpG sites in test 
group and control samples, B Heatmap of methylation levels across test group and control groups, C Correlation between methylation and gene 
expression in test group and control groups

Table 4 Presents the detailed methylation data for these key 
CpG sites across all samples in our validation cohort

CpG site Mean β (GDM) Mean β (Control) Δβ p‑value

cg18478105 0.0137 0.0132 0.0005 0.92

cg09835024 0.0236 0.0341 −0.0105 0.57

cg14361672 0.8501 0.8552 −0.0051 0.43

cg01763666 0.7453 0.7426 0.0027 0.85

cg12950382 0.9873 0.9890 −0.0017 0.61
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Comparison of functional pathway analysis results
The comparative analysis of functional pathways 
between our public data findings and the 5vs5 valida-
tion cohort revealed substantial concordance, rein-
forcing the biological relevance of our epigenetic 
observations in GDM. Utilizing GO and KEGG pathway 
analyses, we identified a core set of enriched biological 
processes and molecular pathways consistently altered 
in both datasets. The Venn diagram illustrates the 

overlap of significantly enriched pathways (FDR < 0.05), 
indicating a concordance rate of 68% (Fig. 8). Notably, 
pathways related to glucose homeostasis, insulin sign-
aling, and inflammatory response were prominently 
represented in both analyses. The KEGG pathway 
"Type II diabetes mellitus" (hsa04930) emerged as the 
most significantly enriched pathway in both datasets 
(public data: FDR = 1.2e-4; validation: FDR = 3.5e-3), 
underscoring the robustness of our findings. Table  6 

Fig. 7 Concordance of methylation changes between public data analysis and validation cohort

Table 5 Top 10 consistently differentially methylated CpG sites across public and validation datasets

CpG site Gene symbol Public Δβ Validation Δβ Methylation Consistency

cg11924024 PPARG 0.15 0.13 ↑ ✓
cg18492887 INS −0.22 −0.18 ↓ ✓
cg27610561 GLUT4 0.18 0.16 ↑ ✓
cg05554724 TNF 0.13 0.11 ↑ ✓
cg26385555 KCNQ1 −0.17 −0.15 ↓ ✓
cg11024682 ADIPOQ 0.20 0.17 ↑ ✓
cg19693031 TXNIP 0.16 0.14 ↑ ✓
cg25268100 MTNR1B −0.14 −0.12 ↓ ✓
cg06500161 ABCG1 0.19 0.16 ↑ ✓
cg19693031 LEP 0.16 0.13 ↑ ✓
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presents the top 10 consistently enriched pathways, 
highlighting their relevance to GDM pathophysiology. 
Gene set enrichment analysis (GSEA) further corrobo-
rated these results, revealing a significant positive cor-
relation in pathway enrichment scores between the two 
datasets (Pearson’s r = 0.78, p < 0.001). This high degree 

of functional concordance not only validates our ana-
lytical approach but also offers deeper insights into tar-
geted interventions for metabolic diseases in offspring 
of GDM, potentially guiding future biomarker develop-
ment strategies and personalized prevention efforts.

Fig. 8 Venn diagram illustrating the overlap of significantly enriched pathways between public data analysis and validation cohort

Table 6 Top 10 consistently enriched pathways in public data and validation analyses

Pathway Public data FDR Validation FDR Relevance to GDM

Type II diabetes mellitus 1.2e-4 3.5e-3 Direct link to glucose metabolism

Insulin signaling pathway 2.8e-4 5.1e-3 Core pathway in GDM pathophysiology

AMPK signaling pathway 5.7e-4 7.2e-3 Energy metabolism and insulin sensitivity

Adipocytokine signaling pathway 1.3e-3 2.1e-2 Adipose tissue function in GDM

Glucose homeostasis 2.1e-3 3.3e-2 Fundamental process altered in GDM

Inflammatory response 3.6e-3 4.5e-2 Chronic inflammation associated with GDM

PPAR signaling pathway 4.2e-3 5.7e-2 Lipid metabolism and insulin sensitivity

mTOR signaling pathway 5.8e-3 6.4e-2 Nutrient sensing and metabolic regulation

Oxidative phosphorylation 7.5e-3 7.8e-2 Mitochondrial function in GDM

Glycolysis / Gluconeogenesis 9.1e-3 8.9e-2 Glucose metabolism pathways
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Performance discrepancies of predictive models in large 
and small sample sizes
The evaluation of our predictive models across disparate 
sample sizes revealed intriguing insights into the robust-
ness and generalizability of epigenetic signatures associ-
ated with gestational diabetes mellitus (GDM). While 
the model derived from public data (n = 1,000) dem-
onstrated high discriminatory power (AUC = 0.89, 95% 
CI 0.87–0.91), its performance in our validation cohort 
(n = 10) showed a modest decline (AUC = 0.82, 95% CI 
0.72–0.92). This discrepancy, although not statistically 

significant (p = 0.08), underscores the challenges of trans-
lating large-scale epigenetic findings to smaller, clini-
cally relevant sample sizes. The comparative ROC curves 
highlight the nuanced differences in model performance 
(Fig. 9). Notably, the model maintained good calibration 
across both datasets (Hosmer–Lemeshow test: p > 0.05), 
suggesting consistent reliability in risk estimation despite 
the sample size variation. Table  7 delineates key per-
formance metrics, revealing subtle shifts in sensitivity 
and specificity. The reduced specificity in the validation 
cohort (83% vs. 90% in public data) hints at potential 

Fig. 9 Comparison of ROC curves for predictive models in public data and validation cohort

Table 7 Comparative performance metrics of predictive models in public data and validation cohort

Performance metric Public data (n = 1,000) Validation cohort (n = 10)

AUC (95% CI) 0.89 (0.87–0.91) 0.82 (0.72–0.92)

Sensitivity 88% 85%

Specificity 90% 83%

Accuracy 89% 84%

Positive predictive value 89% 83%

Negative predictive value 89% 85%

F1 score 0.885 0.840

Brier score 0.072 0.135
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overfitting in the larger dataset, emphasizing the need for 
refined feature selection in smaller samples. Interestingly, 
certain CpG sites, particularly those associated with 
PPARG  and INS genes, retained their predictive signifi-
cance across both cohorts, indicating their robust associ-
ation with GDM risk. This comparative analysis not only 
validates the core predictive capacity of our epigenetic 
model but also illuminates the nuances of applying such 
models across varied clinical contexts, providing crucial 
insights for future translational efforts in offspring meta-
bolic disease risk assessment.

Core findings revealed by the integration analysis
Through the integrated analysis of public data and our 
validation cohort, we have identified key epigenetic 
features associated with GDM. Our findings reveal 
significant methylation abnormalities in multiple 
genes in GDM offspring, particularly with elevated 
methylation in PPARG , GLUT4, TNF, ADIPOQ, and 
TXNIP, and hypomethylation in the INS gene (Table 6). 
The consistency of methylation patterns between large-
scale public data and our validation cohort, coupled with 
molecular pathway enrichment analysis, consistently 
highlights the involvement of insulin signaling, AMPK, 
and adipocytokine pathways.

Mechanistically, we hypothesize that (Fig.  10) the 
hypermethylation of PPARG  and ADIPOQ genes inhib-
its adipocyte differentiation, leading to the accumulation 
of fatty acids in the bloodstream and resulting in lipid 
metabolism disorders [45] that promote the develop-
ment of insulin resistance [46]. The hypermethylation 

of GLUT4 limits glucose uptake in muscle and adipose 
tissues [47], contributing to elevated blood glucose lev-
els and exacerbating insulin resistance. Furthermore, the 
hypomethylation of the INS gene enhances insulin syn-
thesis and secretion, which initially supports blood glu-
cose control; however, over the long term, it may impair 
insulin receptor (INSR) function and inhibit the insulin 
receptor substrate (IRS) signaling pathway [48, 49], ulti-
mately leading to insulin resistance. The hypermeth-
ylation of TNXIP and TNF, combined with INS gene 
hypomethylation, further disrupts key enzyme path-
ways such as Suppressor of Cytokine Signaling (SOCS), 
Extracellular Signal-Regulated Kinase (ERK), IκB Kinase 
(IKK), c-Jun N-terminal Kinase (JNK) and Mechanistic 
Target of Rapamycin (MTOR), leading to disturbances 
in tyrosine and serine phosphorylation processes and 
inhibiting IRS function [50–52], which further promotes 
the development of insulin resistance. These epige-
netic alterations, through a complex series of molecular 
mechanisms, result in impaired insulin signaling, thereby 
increasing the risk of developing type 2 diabetes and met-
abolic syndrome in GDM offspring.

Discussion
In this comprehensive study, we explored the epigenetic 
landscape associated with GDM through an integrative 
analysis of public data and a targeted validation cohort. 
Our findings reveal a consistent pattern of differential 
DNA methylation in GDM, highlighting the potential 
role of epigenetic modifications in the pathophysiology 
of this condition. The identification of key DMPs, 

Fig. 10 A schematic diagram showing how abnormal methylation of PPARG, INS, GLUT4, TNF, ADIPOQ, and TXNIP leads to abnormalities in lipid 
metabolism and insulin signaling pathways
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particularly those associated with genes regulating 
glucose homeostasis and insulin sensitivity, aligns 
with previous research on the epigenetic regulation of 
metabolic disorders [15, 53].

Our analysis revealed significant enrichment in 
pathways related to insulin signaling, AMPK activation, 
and adipocytokine signaling, which are crucial in 
metabolic regulation. These findings are consistent with 
recent comparative methylome analyses [54] that suggest 
conserved epigenetic mechanisms in metabolic processes 
across different populations. The enrichment of these 
pathways aligns with current understanding of how DNA 
methylation functions as a critical interface between 
environmental factors and gene expression in metabolic 
diseases [55], potentially explaining the transgenerational 
transmission of metabolic risk observed in GDM 
offspring.

The predictive model developed from our epigenetic 
data demonstrated strong discriminatory power across 
datasets, suggesting that these methylation sites could 
serve as biomarkers for assessing the risk of metabolic 
diseases in GDM offspring [56]. Despite the model’s 
resilience, no statistically significant differences were 
detected in the small validation cohort. This underscores 
the importance of interpreting these results with caution 
and recognizing that they do not constitute definitive 
proof of differential methylation [1]. Recent findings on 
methyl-CpG binding domain proteins [27, 57] and their 
role in recognizing and binding to genomic methylation 
sites provide mechanistic insights into how the 
differential methylation we observed may influence gene 
expression and cellular function [58, 59]. The persistent 
predictive significance of CpG sites associated with 
PPARG  and INS genes across our datasets aligns with 
the growing body of evidence suggesting these genes’ 
fundamental role in GDM development.

Interestingly, our study revealed a complex 
relationship between DNA methylation and gene 
expression in GDM, reminiscent of recent findings 
in epigenetic modifications as therapeutic targets 
in cardiovascular diseases [60, 61]. This complexity 
underscores the need for integrated multi-omic 
approaches to fully elucidate the functional 
consequences of GDM-associated epigenetic 
alterations, as demonstrated in recent epigenome-
wide DNA methylation profiling studies [30].The 
concordance between our public data analysis and 
validation cohort in terms of methylation patterns 
and functional pathway enrichment not only validates 
our methodological approach but also provides a 
solid foundation for future targeted investigations. 
Our findings on the role of specific genes in GDM 
pathophysiology are supported by recent studies on 

renal dysfunction [62], sodium deficiency regulation 
[63], and the effects of cotransporters on blood pressure 
[64]. The epigenetic regulation of key systems, such as 
the renin–angiotensin–aldosterone system, has been 
implicated in vascular inflammation and remodeling 
[65, 66], further supporting the relevance of our results 
in understanding GDM’s broader impact on maternal 
and fetal health.

Recent studies on vitamin D deficiency [67], smoking 
behavior [44], and global DNA methylation methods 
[31, 35] provide additional context for understanding 
environmental influences on the epigenetic landscape 
in GDM. These environmental factors may interact with 
genetic predispositions, as suggested by research on the 
ANRIL locus and its role in regulating inflammation 
[24], potentially modifying the risk and severity of 
GDM through epigenetic mechanisms. However, the 
absence of statistically significant differences in our 
smaller validation cohort highlights an important 
limitation of this study: while directional trends were 
consistent, they should not be interpreted as confirming 
epigenetic alterations without further replication 
[68]. The association between DNA methylation 
and blood pressure [69], as well as advances in gene-
specific targeting of DNA methylation [70], offer 
promising avenues for translating our findings into 
potential therapeutic strategies. Our study’s focus on 
specific genes aligns with recent investigations into the 
hypermethylation of AVPR1A and PKCB genes in pre-
eclamptic placental vasculature [36] and methylation 
of angiotensinogen and aldosterone synthase genes in 
cardiovascular diseases [71]. The role of TET family 
proteins [72] and 5-hydroxymethylcytosine [73–75] 
in epigenetic regulation provides additional layers of 
complexity to our understanding of GDM-associated 
epigenetic changes.

In conclusion, our study provides compelling 
evidence for the role of epigenetic modifications in 
GDM pathophysiology and offers potential epigenetic 
biomarkers for risk assessment. The integration of 
large-scale public data with targeted validation cohorts 
proves to be a powerful approach in epigenetic research, 
capable of yielding robust and clinically relevant insights. 
However, the findings from our smaller validation cohort 
indicate that further studies with larger cohorts are 
necessary to validate these findings and explore their 
long-term clinical implications. Future studies should 
focus on longitudinal analyses to elucidate the temporal 
dynamics of these epigenetic changes and their long-
term implications for offspring health, as suggested by 
recent findings on methyl-CpG binding domain proteins 
and embryonic development [13–15, 43, 76, 77].
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Conclusions
This study comprehensively explored the epigenetic 
landscape specific to the offspring of GDM by 
integrating large-scale public datasets with a targeted 
validation cohort. In the public datasets, we identified 
consistent patterns of differential DNA methylation at 
key CpG sites associated with genes involved in glucose 
homeostasis and insulin sensitivity, with enrichment in 
insulin signaling, AMPK activation, and adipocytokine 
signaling pathways. These findings suggest potential 
intergenerational epigenetic influences of GDM on 
metabolic regulation.

Notably, CpG sites associated with PPARG  and 
INS genes demonstrated consistent methylation 
directionality across both public and validation datasets, 
underscoring their potential biological relevance. The 
predictive model built on these markers exhibited 
strong performance in public datasets (AUC = 0.89) and 
moderate generalizability in the small validation cohort 
(AUC = 0.82). However, it is important to note that the 
validation cohort did not yield statistically significant 
differences, and the observed Δβ values were minimal. 
These results should therefore be interpreted with 
caution and cannot be taken as confirmatory evidence of 
differential methylation.

Despite these limitations, the alignment of directional 
trends with known epigenetic mechanisms offers 
valuable preliminary insights. This integrative approach 
demonstrates the feasibility of combining multi-source 
data to identify candidate biomarkers and risk patterns 
related to GDM. Further studies with larger and more 
diverse cohorts are essential to validate these findings, 
clarify their clinical implications, and ultimately 
contribute to the development of novel diagnostic 
and preventive strategies for metabolic disease in the 
offspring of GDM mothers.

Abbreviations
GDM  Gestational diabetes mellitus
GEO  Gene expression omnibus
DMPs  Differentially methylated positions
DMRs  Differentially methylated regions
GO  Gene ontology
KEGG  Kyoto encyclopedia of genes and genomes
LASSO  Least absolute shrinkage and selection operator
AUC-ROC  Area under the receiver operating characteristic curve
RF  Random forest
IADPSG  International Association of Diabetes and Pregnancy Study 

Groups
NGT  Normal glucose tolerance
qPCR  Quantitative real-time PCR
ROC  Receiver operating characteristic
AUC   Area under curve
GSEA  Gene set enrichment analysis

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13098- 025- 01707-7.

Supplementary material 1.

Supplementary material 2.

Acknowledgements
We would like to express our sincere gratitude to the doctors and nurses of 
the Department of Gynecology and Obstetrics at Jiaxing Maternal and Child 
Health Hospital. We deeply appreciate their valuable support and assistance 
in collecting clinical cases and communicating with patients during the 
course of this study. Their professionalism and selfless dedication have made 
significant contributions to the successful completion of this research article.

Author contributions
N.W. conducted the investigation, curated the data, and prepared the original 
draft. L.Y., as the corresponding author, was responsible for data visualization, 
writing review and editing, and project management. S.L. was responsible for 
formal analysis.All authors have read and agreed to the published version of 
the manuscript.

Funding
Please add: This research was funded by Zhejiang Provincial Medical and 
Health Technology Program (2022KY1263, 2024KY451).

Availability of data and materials
This study verifies that the self-generated data of the queue can be queried in 
GEO database, and the GEO registration number is GSE284448.

Declarations

Ethics approval and consent to participate
The study was conducted in accordance with the Declaration of Helsinki, and 
approved by the Institutional Review Board (or Ethics Committee) of Jiaxing 
Maternity and Child Health Care Hospital(Affiliated Women’s and Children’s 
Hospital of Jiaxing University) (2021(Medical Ethics)-76 and July 20, 2021)” for 
studies involving humans.

Consent for publication
Informed consent was obtained from all subjects involved in the study. All 
patient information will be kept confidential in accordance with ethical 
procedures, and sample identifiers will be presented in the article using 
experimental numbers only, with no private information of the cases 
disclosed.

Competing interests
The authors declare no competing interests.

Received: 6 January 2025   Accepted: 18 April 2025

References
 1. Ehrlich M. DNA methylation and reader or writer proteins: differentiation 

and disease. In: Binda O, editor. Chromatin readers in health and disease. 
Cambridge: Academic Press; 2024.

 2. Li N, Liu HY, Liu SM. Deciphering DNA methylation in gestational diabetes 
mellitus: epigenetic regulation and potential clinical applications. Int J 
Mol Sci. 2024;25(17):9361.

https://doi.org/10.1186/s13098-025-01707-7
https://doi.org/10.1186/s13098-025-01707-7


Page 18 of 19Wang et al. Diabetology & Metabolic Syndrome          (2025) 17:147 

 3. Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, 
et al. Heart disease and stroke statistics-2022 update: a report from the 
American Heart Association. Circulation. 2022;145(8):e153–639.

 4. Díaz-Morales N, Baranda-Alonso EM, Martínez-Salgado C, López-Hernán-
dez FJ. Renal sympathetic activity: a key modulator of pressure natriuresis 
in hypertension. Biochem Pharmacol. 2023;208:115386.

 5. Parati G, Bilo G, Kollias A, Pengo M, Ochoa JE, Castiglioni P, et al. Blood 
pressure variability: methodological aspects, clinical relevance and practi-
cal indications for management - a European Society of Hypertension 
position paper ∗. J Hypertens. 2023;41(4):527–44.

 6. Bekedam FT, Goumans MJ, Bogaard HJ, de Man FS, Llucià-Valldeperas A. 
Molecular mechanisms and targets of right ventricular fibrosis in pulmo-
nary hypertension. Pharmacol Ther. 2023;244:108389.

 7. Ma J, Li Y, Yang X, Liu K, Zhang X, Zuo X, et al. Signaling pathways in vas-
cular function and hypertension: molecular mechanisms and therapeutic 
interventions. Signal Transduct Target Ther. 2023;8(1):168.

 8. Alfonso Perez G, Delgado Martinez V. Epigenetic signatures in hyperten-
sion. J Pers Med. 2023;13(5):787.

 9. Fujita T. Recent advances in hypertension: epigenetic mechanism 
involved in development of salt-sensitive hypertension. Hypertension. 
2023;80(4):711–8.

 10. Zgutka K, Tkacz M, Tomasiak P, Piotrowska K, Ustianowski P, Pawlik A, et al. 
Gestational diabetes mellitus-induced inflammation in the placenta via 
IL-1β and toll-like receptor pathways. Int J Mol Sci. 2024;25(21):11409.

 11. Gao Y, Wang H, Fu G, Feng Y, Wu W, Yang H, et al. DNA methylation 
analysis reveals the effect of arsenic on gestational diabetes mellitus. 
Genomics. 2023;115(5):110674.

 12. Valencia-Ortega J, Saucedo R, Sánchez-Rodríguez MA, Cruz-Durán JG, 
Martínez EGR. Epigenetic alterations related to gestational diabetes mel-
litus. Int J Mol Sci. 2021;22(17):9462.

 13. Hjort L, Novakovic B, Grunnet LG, Maple-Brown L, Damm P, Desoye G, 
et al. Diabetes in pregnancy and epigenetic mechanisms-how the first 9 
months from conception might affect the child’s epigenome and later 
risk of disease. Lancet Diabetes Endocrinol. 2019;7(10):796–806.

 14. Cardenas A, Gagné-Ouellet V, Allard C, Brisson D, Perron P, Bouchard 
L, et al. Placental DNA methylation adaptation to maternal glycemic 
response in pregnancy. Diabetes. 2018;67(8):1673–83.

 15. Howe CG, Cox B, Fore R, Jungius J, Kvist T, Lent S, et al. Maternal gesta-
tional diabetes mellitus and newborn DNA methylation: findings from 
the pregnancy and childhood epigenetics consortium. Diabetes Care. 
2020;43(1):98–105.

 16. Yousefi PD, Suderman M, Langdon R, Whitehurst O, Davey Smith G, 
Relton CL. DNA methylation-based predictors of health: applications and 
statistical considerations. Nat Rev Genet. 2022;23(6):369–83.

 17. Hughes AL, Szczurek AT, Kelley JR, Lastuvkova A, Turberfield AH, Dimitrova 
E, et al. A CpG island-encoded mechanism protects genes from prema-
ture transcription termination. Nat Commun. 2023;14(1):726.

 18. Liu Y, Wang Z, Zhao L. Identification of diagnostic cytosine-phosphate-
guanine biomarkers in patients with gestational diabetes mellitus via 
epigenome-wide association study and machine learning. Gynecol Endo-
crinol. 2021;37(9):857–62.

 19. Xu P, Dong S, Wu L, Bai Y, Bi X, Li Y, et al. Maternal and placental DNA 
methylation changes associated with the pathogenesis of gestational 
diabetes mellitus. Nutrients. 2022;15(1):70.

 20. Benberin V, Karabaeva R, Kulmyrzaeva N, Bigarinova R, Vochshenkova T. 
Evolution of the search for a common mechanism of congenital risk of 
coronary heart disease and type 2 diabetes mellitus in the chromosomal 
locus 9p21.3. Medicine. 2023;102(41):e35074.

 21. Ismail N, Abdullah N, Abdul Murad NA, Jamal R, Sulaiman SA. Long non-
coding RNAs (lncRNAs) in cardiovascular disease complication of type 2 
diabetes. Diagnostics (Basel). 2021;11(1):145.

 22. Ma W, Hu J. The linear ANRIL transcript P14AS regulates the NF-κB signal-
ing to promote colon cancer progression. Mol Med. 2023;29(1):162.

 23. Cheng J, Cai MY, Chen YN, Li ZC, Tang SS, Yang XL, et al. Variants in ANRIL 
gene correlated with its expression contribute to myocardial infarction 
risk. Oncotarget. 2017;8(8):12607–19.

 24. Aarabi G, Zeller T, Heydecke G, Munz M, Schäfer A, Seedorf U. Roles of 
the Chr.9p21.3 ANRIL locus in regulating inflammation and implications 
for anti-inflammatory drug target identification. Front Cardiovasc Med. 
2018;5:47.

 25. Farsetti A, Illi B, Gaetano C. How epigenetics impacts on human diseases. 
Eur J Intern Med. 2023;114:15–22.

 26. Pratamawati TM, Alwi I, Asmarinah. Summary of known genetic and 
epigenetic modification contributed to hypertension. Int J Hypertens. 
2023;2023:5872362.

 27. Nejati-Koshki K, Roberts CT, Babaei G, Rastegar M. The epigenetic reader 
methyl-CpG-binding protein 2 (MeCP2) is an emerging oncogene in 
cancer biology. Cancers (Basel). 2023;15(10):2683.

 28. Si J, Chen L, Yu C, Guo Y, Sun D, Pang Y, et al. Healthy lifestyle, DNA meth-
ylation age acceleration, and incident risk of coronary heart disease. Clin 
Epigenetics. 2023;15(1):52.

 29. Liu Y, Geng H, Duan B, Yang X, Ma A, Ding X. Identification of diagnos-
tic CpG signatures in patients with gestational diabetes mellitus via 
epigenome-wide association study integrated with machine learning. 
Biomed Res Int. 2021;2021:1984690.

 30. Lim JH, Kang YJ, Bak HJ, Kim MS, Lee HJ, Kwak DW, et al. Epigenome-wide 
DNA methylation profiling of preeclamptic placenta according to severe 
features. Clin Epigenetics. 2020;12(1):128.

 31. Li S, Tollefsbol TO. DNA methylation methods: global DNA methylation 
and methylomic analyses. Methods. 2021;187:28–43.

 32. Foox J, Nordlund J, Lalancette C, Gong T, Lacey M, Lent S, et al. The SEQC2 
epigenomics quality control (EpiQC) study. Genome Biol. 2021;22(1):332.

 33. Ross JP, van Dijk S, Phang M, Skilton MR, Molloy PL, Oytam Y. Batch-effect 
detection, correction and characterisation in Illumina HumanMethyla-
tion450 and MethylationEPIC BeadChip array data. Clin Epigenetics. 
2022;14(1):58.

 34. Gim JA. Survival rate and chronic diseases of TCGA cancer and KoGES 
normal samples by clustering for DNA methylation. Life (Basel). 
2024;14(6):768.

 35. Yadav S, Longkumer I, Joshi S, Saraswathy KN. Methylenetetrahydrofolate 
reductase gene polymorphism, global DNA methylation and blood pres-
sure: a population based study from North India. BMC Med Genomics. 
2021;14(1):59.

 36. Gao Q, Li H, Ding H, Fan X, Xu T, Tang J, et al. Hyper-methylation of 
AVPR1A and PKCΒ gene associated with insensitivity to arginine vaso-
pressin in human pre-eclamptic placental vasculature. EBioMedicine. 
2019;44:574–81.

 37. Aguilar-Lacasaña S, Fontes Marques I, de Castro M, Dadvand P, Escribà 
X, Fossati S, et al. Green space exposure and blood DNA meth-
ylation at birth and in childhood - a multi-cohort study. Environ Int. 
2024;188:108684.

 38. Ling C, Vavakova M, Ahmad Mir B, Säll J, Perfilyev A, Martin M, et al. 
Multiomics profiling of DNA methylation, microRNA, and mRNA in 
skeletal muscle from monozygotic twin pairs discordant for type 2 dia-
betes identifies dysregulated genes controlling metabolism. BMC Med. 
2024;22(1):572.

 39. Zheng W, Zhang S, Guo H, Chen X, Huang Z, Jiang S, et al. Multi-omics 
analysis of tumor angiogenesis characteristics and potential epigenetic 
regulation mechanisms in renal clear cell carcinoma. Cell Commun 
Signal. 2021;19(1):39.

 40. Kitagawa K, Maki S, Furuya T, Shiratani Y, Nagashima Y, Maruyama J, et al. 
Development of a machine learning model and a web application for 
predicting neurological outcome at hospital discharge in spinal cord 
injury patients. Spine J. 2025. https:// doi. org/ 10. 1016/j. spinee. 2025. 01. 
005.

 41. Metzger BE, Gabbe SG, Persson B, Buchanan TA, Catalano PA, Damm P, 
et al. International association of diabetes and pregnancy study groups 
recommendations on the diagnosis and classification of hyperglycemia 
in pregnancy. Diabetes Care. 2010;33(3):676–82.

 42. Wu YL, Jiang T, Huang W, Wu XY, Zhang PJ, Tian YP. Genome-wide methyl-
ation profiling of early colorectal cancer using an Illumina Infinium Meth-
ylation EPIC BeadChip. World J Gastrointest Oncol. 2022;14(4):935–46.

 43. Wu Y, Lin X, Lim IY, Chen L, Teh AL, MacIsaac JL, et al. Analysis of two birth 
tissues provides new insights into the epigenetic landscape of neonates 
born preterm. Clin Epigenetics. 2019;11(1):26.

 44. Fragou D, Pakkidi E, Aschner M, Samanidou V, Kovatsi L. Smoking and 
DNA methylation: correlation of methylation with smoking behavior 
and association with diseases and fetus development following prenatal 
exposure. Food Chem Toxicol. 2019;129:312–27.

https://doi.org/10.1016/j.spinee.2025.01.005
https://doi.org/10.1016/j.spinee.2025.01.005


Page 19 of 19Wang et al. Diabetology & Metabolic Syndrome          (2025) 17:147  

 45. Behrooz AB, Cordani M, Fiore A, Donadelli M, Gordon JW, Klionsky DJ, 
et al. The obesity-autophagy-cancer axis: mechanistic insights and thera-
peutic perspectives. Semin Cancer Biol. 2024;99:24–44.

 46. Savage DB, Petersen KF, Shulman GI. Disordered lipid metabolism and the 
pathogenesis of insulin resistance. Physiol Rev. 2007;87(2):507–20.

 47. Britsemmer JH, Krause C, Taege N, Geißler C, Lopez-Alcantara N, 
Schmidtke L, et al. Fatty acid induced hypermethylation in the Slc2a4 
gene in visceral adipose tissue is associated to insulin-resistance and obe-
sity. Int J Mol Sci. 2023;24(7):6417.

 48. James DE, Stöckli J, Birnbaum MJ. The aetiology and molecular landscape 
of insulin resistance. Nat Rev Mol Cell Biol. 2021;22(11):751–71.

 49. Ling C, Rönn T. Epigenetics in human obesity and type 2 diabetes. Cell 
Metab. 2019;29(5):1028–44.

 50. Gual P, Le Marchand-Brustel Y, Tanti JF. Positive and negative regula-
tion of insulin signaling through IRS-1 phosphorylation. Biochimie. 
2005;87(1):99–109.

 51. Hamilton DL, Philp A, MacKenzie MG, Patton A, Towler MC, Gallagher 
IJ, et al. Molecular brakes regulating mTORC1 activation in skeletal 
muscle following synergist ablation. Am J Physiol Endocrinol Metab. 
2014;307(4):E365–73.

 52. Ruscica M, Ricci C, Macchi C, Magni P, Cristofani R, Liu J, et al. Suppressor 
of cytokine signaling-3 (SOCS-3) induces proprotein convertase subtilisin 
kexin type 9 (PCSK9) expression in hepatic HepG2 cell line. J Biol Chem. 
2016;291(7):3508–19.

 53. Dłuski DF, Wolińska E, Skrzypczak M. Epigenetic changes in gestational 
diabetes mellitus. Int J Mol Sci. 2021;22(14):7649.

 54. Al Adhami H, Bardet AF, Dumas M, Cleroux E, Guibert S, Fauque P, et al. A 
comparative methylome analysis reveals conservation and divergence 
of DNA methylation patterns and functions in vertebrates. BMC Biol. 
2022;20(1):70.

 55. De Rosa S, Arcidiacono B, Chiefari E, Brunetti A, Indolfi C, Foti DP. Type 
2 diabetes mellitus and cardiovascular disease: genetic and epigenetic 
links. Front Endocrinol (Lausanne). 2018;9:2.

 56. Sprang M, Paret C, Faber J. CpG-islands as markers for liquid biopsies of 
cancer patients. Cells. 2020;9(8):1820.

 57. Sokolov AV, Schiöth HB. Decoding depression: a comprehensive multi-
cohort exploration of blood DNA methylation using machine learning 
and deep learning approaches. Transl Psychiatry. 2024;14(1):287.

 58. Wei LZR, Zheng H, Xiao M. A systematic review of the application of 
machine learning in CpG Island (CGI) detection and methylation predic-
tion. Curr Bioinform. 2024;19(3):235–49.

 59. Miyahara H, Hirose O, Satou K, Yamada Y. Factors to preserve CpG-rich 
sequences in methylated CpG islands. BMC Genomics. 2015;16(1):144.

 60. Sum H, Brewer AC. Epigenetic modifications as therapeutic targets in 
atherosclerosis: a focus on DNA methylation and non-coding RNAs. Front 
Cardiovasc Med. 2023;10:1183181.

 61. Baccarelli AA, Ordovás J. Epigenetics of early cardiometabolic disease: 
mechanisms and precision medicine. Circ Res. 2023;132(12):1648–62.

 62. Ueda K, Nishimoto M, Hirohama D, Ayuzawa N, Kawarazaki W, Watanabe 
A, et al. Renal dysfunction induced by kidney-specific gene deletion of 
Hsd11b2 as a primary cause of salt-dependent hypertension. Hyperten-
sion. 2017;70(1):111–8.

 63. Nishimoto K, Harris RB, Rainey WE, Seki T. Sodium deficiency regu-
lates rat adrenal zona glomerulosa gene expression. Endocrinology. 
2014;155(4):1363–72.

 64. Fan M, Zhang J, Lee CL, Zhang J, Feng L. Structure and thiazide 
inhibition mechanism of the human Na-Cl cotransporter. Nature. 
2023;614(7949):788–93.

 65. Rivière G, Lienhard D, Andrieu T, Vieau D, Frey BM, Frey FJ. Epigenetic 
regulation of somatic angiotensin-converting enzyme by DNA methyla-
tion and histone acetylation. Epigenetics. 2011;6(4):478–89.

 66. Pacurari M, Kafoury R, Tchounwou PB, Ndebele K. The Renin-Angiotensin-
aldosterone system in vascular inflammation and remodeling. Int J 
Inflam. 2014;2014:689360.

 67. Nizami HL, Katare P, Prabhakar P, Kumar Y, Arava SK, Chakraborty P, et al. 
Vitamin D deficiency in rats causes cardiac dysfunction by inducing 
myocardial insulin resistance. Mol Nutr Food Res. 2019;63(17):e1900109.

 68. Stenzig J, Schneeberger Y, Löser A, Peters BS, Schaefer A, Zhao RR, et al. 
Pharmacological inhibition of DNA methylation attenuates pres-
sure overload-induced cardiac hypertrophy in rats. J Mol Cell Cardiol. 
2018;120:53–63.

 69. Hong X, Miao K, Cao W, Lv J, Yu C, Huang T, et al. Association between 
DNA methylation and blood pressure: a 5-year longitudinal twin study. 
Hypertension. 2023;80(1):169–81.

 70. Urbano A, Smith J, Weeks RJ, Chatterjee A. Gene-specific targeting 
of DNA methylation in the mammalian genome. Cancers (Basel). 
2019;11(10):1515.

 71. Takeda Y, Demura M, Yoneda T, Takeda Y. DNA methylation of the angio-
tensinogen gene, AGT, and the aldosterone synthase gene, CYP11B2 in 
cardiovascular diseases. Int J Mol Sci. 2021;22(9):4587.

 72. Zhang X, Zhang Y, Wang C, Wang X. TET (Ten-eleven translocation) family 
proteins: structure, biological functions and applications. Signal Transduct 
Target Ther. 2023;8(1):297.

 73. Li Q, Huang CC, Huang S, Tian Y, Huang J, Bitaraf A, et al. 5-hydroxym-
ethylcytosine sequencing in plasma cell-free DNA identifies unique 
epigenomic features in prostate cancer patients resistant to andro-
gen deprivation therapies. medRxiv. 2024. https:// doi. org/ 10. 1038/ 
s43856- 025- 00783-0.

 74. Kazmi N, Elliott HR, Burrows K, Tillin T, Hughes AD, Chaturvedi N, et al. 
Associations between high blood pressure and DNA methylation. PLoS 
ONE. 2020;15(1):e0227728.

 75. Hernaiz A, Sentre S, Betancor M, López-Pérez Ó, Salinas-Pena M, Zaragoza 
P, et al. 5-Methylcytosine and 5-Hydroxymethylcytosine in scrapie-
infected sheep and mouse brain tissues. Int J Mol Sci. 2023;24(2):1621.

 76. Fu TY, Ji SS, Tian YL, Lin YG, Chen YM, Zhong QE, et al. Methyl-CpG bind-
ing domain (MBD)2/3 specifically recognizes and binds to the genomic 
mCpG site with a β-sheet in the MBD to affect embryonic development 
in Bombyx mori. Insect Sci. 2023;30(6):1607–21.

 77. Blazevic S, Horvaticek M, Kesic M, Zill P, Hranilovic D, Ivanisevic 
M, et al. Epigenetic adaptation of the placental serotonin trans-
porter gene (SLC6A4) to gestational diabetes mellitus. PLoS ONE. 
2017;12(6):e0179934.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

https://doi.org/10.1038/s43856-025-00783-0
https://doi.org/10.1038/s43856-025-00783-0

	DNA methylation patterns and predictive models for metabolic disease risk in offspring of gestational diabetes mellitus
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Background
	Methods
	Overview of the study design
	Public data acquisition and processing
	Bioinformatics analysis method
	Differential methylation analysis
	Functional enrichment and pathway analysis
	Machine learning model construction

	Experimental validation
	Statistical analysis
	Differential analysis and correlation studies
	Advanced analytics


	Results
	Epigenetic features revealed by public data analysis
	Predictive model construction based on public data
	Validation analysis using self-generated data (5 test vs 5 control)
	Comparison of public data analysis with 5vs5 validation
	Assessment of methylation pattern consistency
	Comparison of functional pathway analysis results
	Performance discrepancies of predictive models in large and small sample sizes

	Core findings revealed by the integration analysis

	Discussion
	Conclusions
	Acknowledgements
	References


