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Abstract
Background This study explores the causal relationships between five major lipids, 249 circulating metabolites, 
and four diabetic retinopathy (DR) outcomes: overall DR, background DR, severe background DR, and proliferative 
DR (PDR). We aim to identify plasma proteins that mediate these causal effects, offering insights into potential 
therapeutic targets.

Methods We conducted metabolome-wide Mendelian randomization (MR) analyses to assess associations between 
major lipids, metabolites, and DR outcomes. Multivariable MR (MVMR) and proteome-wide mediated MR (two-step 
MR) analyses were performed to ensure robust evaluation and identify mediating plasma proteins.

Results Triglycerides were identified as a significant risk factor for DR, mediated by proteins like Dickkopf-3 (DKK3), 
ST6 N-acetylglucosamine transferase 6 (ST4S6), and Neogenin (NEO1). For background DR, HDL-C, specific VLDL 
particles, and LDL triglycerides were protective, mediated by proteins like chloride intracellular channel 5 (CLIC5), 
basal cell adhesion molecule (BCAM), and Ribophorin I (RPN1). Additionally, polyunsaturated fatty acids (PUFAs) and 
total choline were protective against PDR, mediated by Radical Fringe Gene (RFNG).

Conclusions This study identifies specific plasma proteins that mediate the effects of lipids and metabolites on DR, 
establishing a direct molecular link between these biomarkers and disease progression. These findings enhance our 
understanding of the pathophysiological mechanisms underlying DR and highlight potential targets for therapeutic 
intervention.
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Introduction
Diabetic retinopathy (DR) is the most common compli-
cation of diabetes mellitus (DM) and a leading cause of 
preventable blindness among adults, posing a significant 
public health challenge [1, 2]. By 2030, it is projected 
that 129.84  million adults globally will suffer from DR, 
with this number rising to 160.50  million by 2045 [3]. 
DR is characterized by progressive damage to the retinal 
microvasculature, with its development and progression 
are closely linked to metabolic dysregulation, including 
hyperglycemia and associated metabolic disturbances. 
Although elevated blood glucose levels has been recog-
nized to contribute to the development of DR, differences 
in HbA1c levels explain only 6.6% of the variation in DR 
risk for the entire study cohort in a diabetes control and 
complications trial [4].

Dyslipidemia, defined by the presence of abnormal 
levels of lipids in the blood, is a common feature in indi-
viduals with diabetes and has been implicated in vari-
ous diabetic complications, including DR [5]. Although 
epidemiological studies hint at a link between lipid 
irregularities and DR, establishing causality is complex, 
primarily due to the influence of confounding variables 
and the possibility of reverse causation [6]. Meta-analy-
ses of DR research have identified associations between 
blood pressure, serum total cholesterol, and glycosyl-
ated hemoglobin levels with the prevalence of retinopa-
thy. However, these factors collectively account for only 
a modest 9% of DR progression [7]. Metabolomics, a bur-
geoning field in the biomedical sciences, offers a novel 
perspective in the quest to understand complex diseases 
like DR. It is estimated that genetic variation accounts for 
approximately 50% of the observed phenotypic variance 
at the metabolite level, offering a unique opportunity for 
inferring causality from metabolite levels to disease risk 
[8]. Mendelian randomization (MR) represents a pow-
erful approach in this context, utilizing genetic variants 
associated with a specific exposure to assess its causal 
impact on an outcome. By leveraging the principles of 
MR, researchers can navigate around the complexities 
of confounding factors and reverse causation, thereby 
enhancing the reliability of causality evidence in disease 
research. This method holds particular promise for elu-
cidating the intricate interplay between metabolic path-
ways and DR pathogenesis.

In this study, we aimed to explore the causal asso-
ciations between five major lipids and 249 circulating 
metabolites with various DR outcomes, including overall 
DR, background DR, severe background DR, and prolif-
erative DR (PDR). By employing metabolome-wide MR 
analyses, we assessed the relationships between these 
factors and DR outcomes. Additionally, we utilized pro-
teome-wide mediated MR analyses to identify plasma 
proteins that mediate these causal effects. Our findings 

provide valuable insights into the roles of specific lipids, 
metabolites, and proteins in DR, highlighting potential 
targets for therapeutic intervention and guiding future 
research directions.

Method
Data sources
The summary datasets used in this study are publicly 
available and can be accessed through the cited papers. 
All original GWAS studies included in this research were 
conducted with approval from their respective ethics 
committees, and informed consent was obtained from all 
participants involved in these studies.

This metabolome-wide MR study utilized publicly 
accessible summary datasets, as detailed in Table S1. In 
two-sample MR analyses, we obtained GWAS summary 
statistics for 254 circulating metabolites from the MRC-
IEU OpenGWAS project (https://gwas.mrcieu.ac.

uk). These included data for five major non-fasted 
lipoprotein lipid traits measured using standard clinical 
chemistry assays in approximately 441,016 participants 
from the UK Biobank (UKBB) [9], as well as 249 meta-
bolic biomarkers using high-throughput NMR spectros-
copy in over 114,000 participants of European ancestry 
from the UKBB [10]. Summary-level data for outcomes, 
including diabetic retinopathy (DR), background DR, 
severe background DR, and proliferative diabetic reti-
nopathy (PDR), were sourced from the FinnGen Release 
9, a comprehensive European consortium ( h t t p  s : /  / s t o  r a  g 
e .  g o o  g l e a  p i  s . c o m /.

finngen-public-data-r9/summary_stats/) [11]. These 
datasets included 10,413 cases of DR compared to 
308,633 control subjects, 4,011 background DR cases 
juxtaposed against 344,569 controls, 816 severe back-
ground DR cases compared to 344,569 controls, as well 
as 9,511 PDR cases against 362,581 controls. In the 
mediation analyses, we incorporated additional datasets 
beyond the previously described exposure and outcome 
data. Specifically, we utilized 4,489 GWAS summary sta-
tistics for available proteins sourced from the MR-Base 
NHGRI-EBI GWAS Catalog (https://gwas.mrcieu.ac.uk/) 
as mediators, which included 3,282 plasma proteins from 
3,301 healthy participants in the INTERVAL study [12], 
1,124 blood circulating proteins measured in 1,000 blood 
samples from the KORA study [13], and 83 proteins from 
3,394 individuals in the IMPROVE study [14].

Identification of qualified genetic instrumental variables 
(IVs)
To identify qualified genetic instruments, we selected 
single-nucleotide polymorphisms (SNPs) based on 
stringent criteria: we initially extracted SNPs that 
achieved genome-wide significance (P < 5E-08) and 
then clumped them within a 1000 kb window to an LD 
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threshold of R² < 0.1, using the 1000 Genomes Euro-
pean Ancestry reference panel [15] to ensure genetic 
independence. To avoid the influence of weak instru-
ment bias, we calculated the F statistic with for-
mula: F = R2 × (N − k − 1)/k × (1 − R2), and 
the genetic variation ( R2) with the formula R2 = 
2 × EAF × (1 − EAF) × β 2, where N represents 
the sample size, k represents the number of IVs, EAF is 
the effect allele frequency, and β is the estimated effect 
size. SNPs with an F statistic of ≥ 10 were retained to 
minimize weak instrument bias. Finally, we harmonized 
the exposure and outcome datasets to ensure that the 
effect of each variant on both the exposure and outcome 
aligned with the same allele. We inferred positive-strand 
alleles and systematically excluded palindromic SNPs 
with ambiguous allele frequencies and any incompatible 
alleles.

Univariable MR (UVMR) and multivariable MR (MVMR)
In our study, we employed the R package “TwoSam-
pleMR” (version: 0.5.8) for UVMR analyses to explore 
the relationship between circulating metabolites and 
DR outcomes. For single IV analyses, we utilized the 
Wald Ratio to estimate causal relationships. Under the 
assumption of valid IVs and no horizontal pleiotropy, 
we predominantly used the inverse-variance weighted 
(IVW) method as a robust MR approach to infer causal-
ity [16]. MVMR extends the standard MR framework by 
considering multiple potential risk factors within a single 
model [17]. To circumvent the suboptimal performance 
of traditional MVMR using standard linear regression 
in the presence of numerous risk factors, we employed 
MR-BMA. This Bayesian model averaging approach not 
only scales effectively to high-throughput experiments 
but also demonstrates robustness in detecting true causal 
risk factors, even when candidate factors are highly cor-
related [18]. The MVMR analyses were performed exclu-
sively on causal circulating metabolites associated with 
the same DR outcome to ensure robust evaluation. Quali-
fied IVs commonly related to causal circulating metabo-
lites were extracted and processed using the same criteria 
as described previously (P < 5E-08, clumped at R² < 0.1 
within a 1000  kb window, based on the 1000 Genomes 
European Ancestry reference panel). Within a Bayesian 
framework, MR-BMA calculates the marginal inclusion 
probability (MIP) and the model-averaged causal effect 
(MACE) for each risk factor. MIP is the sum of the pos-
terior probabilities (PP) of all models that include the 
risk factor, indicating the likelihood that the risk fac-
tor is a causal determinant of disease risk. MACE pro-
vides a conservative estimate of the average direct causal 
effect of the risk factor on the outcome, derived through 
weighted averaging, with the weights determined by the 
posterior probabilities of the respective models.

Mediation MR analysis
We performed two-step MR analyses to explore RNA 
molecules that may mediate the link between circulat-
ing metabolites and DR outcomes. Initially, we applied 
UVMR to estimate the causal effect (β1) of circulating 
metabolites on each potential mediator. Subsequently, 
we also used UVMR to estimate the causal effect (β2) 
of each mediator on DR outcomes. If the results indi-
cated that both β1 and β2 were significant, we used 
the “product of coefficients” method to calculate the 
mediation effect (β1 × β2) of circulating metabolites 
on DR outcomes through each mediator. We also cal-
culated the direct effect of circulating metabolites on 
DR outcomes by excluding the mediator, which was 
derived by subtracting the mediation effect from the 
total effect. The standard errors for the mediation 
effects were calculated using the delta method formula: 
SEmediation =

√
(β 1 × SE1) + (β 2 × SE2) . The 

z-score for the mediation effects was then calculated 
as: Z = mediation effect (β 1 × β 2)/SEmediation

. Finally, the P-value for the mediation 
effects was calculated using the formula: 
P = 2 × pnorm(q = |Z|, lower.tail = FALSE). Neg-
ative mediation proportions were truncated at a mini-
mum threshold of 0%, as this is the lowest threshold to 
determine a mediation proportion.

Sensitivity analysis
For the UVMR analyses, we conducted several sensi-
tivity analyses to support the IVW estimates, includ-
ing the weighted median, simple mode, weighted mode, 
and MR-Egger. The weighted median approach provides 
a reliable estimate of causality when at least 50% of the 
weight is derived from valid IVs [19]. The simple and 
weighted mode methods estimate the causal effect based 
on mode of the unweighted and IVW empirical density 
functions, respectively [20]. The MR-Egger regression 
method can detect directional horizontal pleiotropy and 
provide a corrected estimate [21]. The P-value < 0.05 for 
the MR-Egger intercept indicates the presence of direc-
tional pleiotropy. Cochran’s Q statistic was calculated to 
evaluate heterogeneity [22].

Functional annotation for RNA mediators
To annotate the RNA mediators implicated in mediating 
the causal relationship between metabolites and DR out-
comes, we conducted functional annotation to uncover 
their biological significance. Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analyses were performed using the 
R packages “clusterProfiler” and “org.Hs.eg.db” to iden-
tify pathways enriched with the identified RNA media-
tors. Additionally, we constructed a Protein-Protein 



Page 4 of 11Wang et al. Diabetology & Metabolic Syndrome          (2025) 17:139 

Interaction (PPI) network using data from the STRING 
database.

Statistical analysis
To address multiple testing, we employed the Benjamini-
Hochberg false discovery rate (FDR) procedure. IVW 
estimates with| β | > 0.1, P-value < 0.05, and FDR < 0.05, 
supported by at least one sensitivity analysis, were con-
sidered robust evidence of causality. IVW estimates with 
a P-value < 0.05 but FDR ≥ 0.05 or lacking support from 
sensitivity analyses were considered suggestive of poten-
tial causality. To clearly interpret the causal effect ( β
), we utilized the odds ratio (OR), an intuitive indicator 
for assessing risk, to exhibit the potential impact of lipid 
levels on DR outcomes. All MR analyses were performed 
using R software (version 4.3.1) with the following R 
packages: “TwoSampleMR” (version 0.5.8), “MVMR” 
(version 0.4), and “MendelianRandomization” (version 
0.10.0). Additionally, R packages “clusterProfiler” (version 
4.10.1) and “org.Hs.eg.db” (version 3.16.0) were utilized 
for GO and KEGG pathway investigations. The code for 
the MR-BMA method was obtained from the GitHub 
repository ( h t t p  s : /  / g i t  h u  b . c  o m /  v e r e  n a  - z u b e r / d e m o _ A M 
D) referenced in the literature [18].

Results
Two putative causal major lipids for DR outcomes with 
robust evidence
In the UVMR analyses of five major lipids, including tri-
glycerides, apolipoprotein B, LDL cholesterol, HDL cho-
lesterol, and apolipoprotein A-I, we observed significant 
causal relationships between nearly all these lipids and 
one or more of the four DR outcomes (P-value < 0.05, as 
shown in Fig. 1, Table S2). Specifically, elevated triglycer-
ide levels increased the risks for DR (OR [95% CI] = 1.11 
[1.07–1.16]; P = 7.57e-06) with robust causal evidence, 
background DR (OR [95% CI] = 1.07[1.01–1.14]; P = 0.03), 
and severe background DR (OR [95% CI] = 1.18 [1.04–
1.33]; P = 0.02) with suggestive causal evidence. Higher 
HDL cholesterol levels decreased the risk for all four DR 
outcomes, with robust evidence of causality for back-
ground DR (OR [95% CI] = 0.88[0.83–0.93]; P = 2.66e-06) 
and the strongest protective effect for severe background 
DR (OR [95% CI] = 0.82[0.70–0.93]; P = 5.20e-04). Addi-
tionally, apolipoprotein A-I exhibited varying degrees 
of protective effects across the four DR outcomes, with 
suggestive evidence of causality. Both LDL cholesterol 
and apolipoprotein B exhibited slight protective effects 
against DR (OR = 0.92 and 0.95 respectively), LDL choles-
terol showed suggestive causal effects on PDR (OR [95% 
CI] = 0.95[0.90–0.99]; P = 0.015). However, it is important 
to note that most results exhibited significant heteroge-
neity and pleiotropy (P < 0.05). For results demonstrat-
ing pleiotropy, the MR-Egger method was employed to 

Fig. 1 Putative causal relationships between 5 major lipids and four DR outcomes. The forest plots delineated the causal impact of five major lipids on 
four diabetic retinopathy. (DR) outcomes through univariable Mendelian randomization analysis. An asterisk (*) indicates. suggestive causality, while three 
asterisks (***) denote robust causality
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identify and exclude outlier SNPs with horizontal pleiot-
ropy, ensuring the robustness of the conclusions (Table 
S3). For results indicating heterogeneity, the weighted 
median approach was utilized to facilitate causal infer-
ence (Table S4).

Eleven plasma proteins mediated the causal effect of two 
causal major lipids on DR outcomes
Our findings indicate that elevated triglyceride levels 
are associated with an increased risk of DR, whereas 
higher HDL cholesterol levels are linked to a reduced 
risk of background DR, substantiated by robust causal 
evidence. Mediation MR analysis identified ten plasma 
proteins (Fig.  2A) that significantly mediate the causal 
effect of triglycerides on DR (β = 0.12). Among these, 

Fig. 2 Proteins mediating the causal effect of triglycerides on DR. The chord diagram illustrated that ten proteins significantly mediated the causal effect 
of triglycerides on diabetic retinopathy(DR). A. Protein-protein interaction (PPI) analysis revealed that among these ten proteins, only Proto-Oncogene, 
Src Family Tyrosine Kinase (FYN), and Neogenin 1 (NEO1) exhibited interactions. C. Enrichment analyses demonstrated that Retinol Dehydrogenase 16 
(RDH16), Dickkopf-related protein 3 (DKK3), NEO1, and FYN were significantly implicated in various biological processes, including Cellular Hormone 
Metabolic Process (GO: BP), Cellular Response to Transforming Growth Factor Beta Stimulus (GO: BP), Threonine Kinase Signaling Pathway (GO: BP), Post-
synaptic Density (GO: CC), Co-receptor Binding (GO: MF), Axon Guidance (KEGG), and Retinol Metabolism (KEGG) (Fig. 2C, adjusted P < 0.05)
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Fig. 3 (See legend on next page.)
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Dickkopf-related protein 3 (DKK3), Sulfotransferase 
Family 4 A, Memb.

-er 1 (ST4S6), and Neogenin 1 (NEO1) exhibit media-
tion effects consistent with the overall impact of triglyc-
erides on DR (β = 0.03, 0.03, and 0.02 in mediation MR 
analyses, respectively). Additionally, PPI analysis revealed 
an interaction between Proto-Oncogene, Src Family 
Tyrosine Kinase (FYN) and NEO1 within the set of ten 
proteins (Fig.  2B). Enrichment analyses demonstrated 
that Retinol Dehydrogenase 16 (RDH16), DKK3, NEO1, 
and FYN were significantly involved in biological pro-
cesses such as Cellular Hormone Metabolic Process (GO: 
BP), Cellular Response to Transforming Growth Fac-
tor Beta Stimulus (GO: BP), Threonine Kinase Signaling 
Pathway (GO: BP), Postsynaptic Density (GO: CC), Co-
receptor Binding (GO: MF), Axon Guidance (KEGG), 
and Retinol Metabolism (KEGG) (Fig.  2C, adjusted 
P < 0.05). Furthermore, mediation MR analysis also 
revealed that the protein RPN1 significantly mediated the 
causal effect of HDL cholesterol on background DR (β = 
-0.10), with a mediation effect of -0.01 (Table S5).

Twenty-six putative causal metabolites for DR outcomes 
with robust evidence
In the UVMR analyses, eleven metabolites, includ-
ing seven associated with very low-density lipoprotein 
(VLDL), three with low-density lipoprotein (LDL), and 
one with intermediate-density lipoprotein (IDL), demon-
strated robust causal associations with DR risk (Fig.  3A 
and Table S2). Among these, the elevated triglycerides to 
total lipids ratio in large VLDL (OR [95% CI] = 1.11 [1.06–
1.16]; P = 3.71e − 05) and increased phospholipids to total 
lipids ratio in large LDL (OR [95% CI] = 1.12 [1.06–1.17]; 
P = 2.66e-06) were found to significantly heighten the DR 
risk. The remaining nine metabolites exhibited negative 
causal associations with DR risk. However, when con-
sidering the combined effect of these eleven metabolites 
on DR risk through MR-BMA analysis, only six VLDL-
related metabolites and two LDL-related metabolites 
exhibited significant negative associations with DR. 
Specifically, cholesteryl esters in very small VLDL, cho-
lesterol in very small VLDL, concentration of very small 
VLDL particles, and triglycerides in large LDL showed 
higher MIPs of 0.918, 0.814, 0.744, and 0.631, respec-
tively, with FDRs < 0.05.

For background DR, UVMR analyses identified five 
metabolites with robust causal associations. Among 

these, two metabolites related to omega-3 fatty acids 
(OR = 0.89 and 0.91; P = 6.87e-05 and 8.97e-05) and 
docosahexaenoic acid (OR [95% CI] = 0.88 [0.82–0.94]; 
P = 5.38e-05) were observed to have significant nega-
tive associations with background DR risk. Conversely, 
an elevated ratio of omega-6 fatty acids to omega-3 fatty 
acids (OR [95% CI] = 1.12 [1.07–1.17]; P = 2.40e-05) and 
an increased phospholipids to total lipids ratio in large 
LDL (OR [95% CI] = 1.15 [1.09–1.22]; P = 3.83e-05) were 
associated with a heightened background DR risk. MR-
BMA analysis, considering the combined impact of these 
five causal metabolites, found that only the phospho-
lipids to total lipids ratio in large LDL had a significant 
effect on background DR risk with MIPs of 0.943 and 
FDR < 0.05(Fig.  3B). For severe background DR, UVMR 
analyses identified that only elevated omega-3 fatty acid 
levels were significantly associated with a reduced risk of 
severe background DR (OR [95% CI] = 0.78 [0.66–0.90]; 
P = 7.00e-05).

Regarding PDR, UVMR analyses identified nine metab-
olites with robust causal associations. Among these, 
increased tyrosine levels were significantly associated 
with an elevated risk of PDR (OR [95% CI] = 1.15 [1.08–
1.21]; P = 5.50e-05). Additionally, two metabolites related 
to fatty acids (OR = 0.90 and 0.89; P = 1.29e-04 and 1.11e-
05), two phospholipid-related metabolites (OR = 0.88 
and 0.90; P = 9.50e-05 and 1.56e-05), two choline-related 
metabolites (OR = 0.89 and 0.90; P = 2.28e-05 and 1.59e-
5), free cholesterol in small HDL (OR [95% CI] = 0.88 
[0.81–0.94]; P = 9.55e-05), and phosphoglycerides (OR 
[95% CI] = 0.89 [0.84–0.94]; P = 1.08e-05) were observed 
to have significant negative associations with PDR. MR-
BMA analysis, considering the combined impact of these 
nine causal metabolites, revealed that only elevated levels 
of total cholines and polyunsaturated fatty acids (PUFAs) 
were significantly associated with a reduced risk of 
PDR with MIPs of 0.164 and 0.184, respectively, and all 
FDR < 0.05(Fig. 3B).

Thirteen plasma proteins mediated the effect of causal 
metabolites on DR outcomes
Although our study initially identified 11 metabolites with 
robust causal associations with DR risk, we subsequently 
validated 8 of these metabolites through MVMR analy-
sis. The proteome-wide mediation MR analysis identified 
10 plasma proteins that mediate the causal effects of 7 of 
these metabolites on DR (Table 1 and Table S5). For the 5 

(See figure on previous page.)
Fig. 3 Putative causal circulating metabolites of four DR outcomes identified by univariable and multivariable Mendelian randomization analyses. A. The 
heatmap illustrated the effects of 26 causal circulating metabolites with robust evidence on four diabetic retinopathy (DR) outcomes identified through 
univariable Mendelian randomization (UVMR) analyses. These included 11 metabolites for overall DR, 5 for background DR, 1 for severe background DR, 
and 9 for proliferative DR (PDR). B. The forest plots depicted the results of multivariable Mendelian randomization (MVMR) analyses using the MR-BMA 
method. These analyses identified 8 out of the 11 causal metabolites for overall DR, 1 out of the 5 for background DR, and 2 out of the 9 for PDR, consider-
ing the combined impact of these metabolites
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very small VLDL-related metabolites, proteins Chloride 
Intracellular Channel 5 (CLIC5) and BCAM (Basal Cell 
Adhesion Molecule) significantly potentiated the pro-
tective effects of very small VLDL-related metabolites 
on DR (mediation β = -0.06 and − 0.02, total effect β = 
-0.11 to -0.15). Conversely, proteins (Signal Regulatory 
Protein Gamma) SIRPG, ST4S6, PGRC2 (Progestin and 
AdipoQ Receptor Family Member 2), DKK3, N-terminal 
pro-Brain Natriuretic Peptide (N-terminal pro-BNP), 
and (Thiamine Transporter) THTR significantly attenu-
ated the protective effects of VLDL-related metabolites 
on DR (mediation β > 0). For the 2 LDL-related metabo-
lites, proteins BCAM and Sushi, Von Willebrand Fac-
tor Type A, EGF And Pentraxin Domain Containing 1 
(SVEP1) significantly augmented the protective effects of 

LDL-related metabolites on DR (mediation β = -0.02 and 
− 0.01, total effect β = -0.108 and − 0.119, respectively).

Additionally, for background DR, proteome-wide 
mediation MR analysis revealed that NAD(P)H dehy-
drogenase mediates the risk effect of the phospholipid 
to total lipid ratio in large LDL on background DR (total 
effect β = 0.14, mediation effect = 0.01). For PDR, protein 
RFNG O-Fucosylpeptide 3-Beta-N-Acetylglucosamin-
yltransferase (RFNG) mitigates the protective effects of 
PUFAs and total cholines on PDR (mediation β = 0.07 
and 0.06, total effect β = -0.12 and − 0.11, respectively), 
whereas protein PDE4D positively mediates the protec-
tive effects of PUFAs on PDR (mediation β = -0.03, total 
effect β = -0.12).

Table 1 Summary of significant plasma proteins from mediation MR analysis of causal metabolites on DR outcomes
Exposure Mediate 

proteins
Outcome Total 

Effect
Effect of 
Expo-
sure on 
Mediator

Effect of 
Me-
diator on 
Outcome

Me-
dia-
tion 
Effect

Propor-
tion 
Mediated

Direct 
Effect

P-value

Triglycerides in large LDL BCAM DR -0.119 -0.194 0.122 -0.024 0.198 -0.096 1.39E-02
Triglycerides in large LDL TMEM2 DR -0.119 -0.122 -0.123 0.015 -0.126 -0.134 3.47E-02
Triglycerides in large LDL SVEP1 DR -0.119 -0.117 0.087 -0.01 0.085 -0.109 4.26E-02
Concentration of very small VLDL 
particles

ST4S6 DR -0.136 -0.188 -0.16 0.03 -0.221 -0.166 6.46E-03

Concentration of very small VLDL 
particles

CLIC5 DR -0.136 -0.22 0.287 -0.063 0.464 -0.073 3.07E-03

Concentration of very small VLDL 
particles

BCAM DR -0.136 -0.129 0.122 -0.016 0.116 -0.12 4.24E-02

Concentration of very small VLDL 
particles

DKK3 DR -0.136 -0.122 -0.11 0.013 -0.099 -0.15 4.80E-02

Phospholipids in very small VLDL N- terminal
pro-BNP

DR -0.126 -0.128 -0.123 0.016 -0.125 -0.142 3.02E-02

Phospholipids in very small VLDL ST4S6 DR -0.126 -0.17 -0.16 0.027 -0.215 -0.153 8.58E-03
Phospholipids in very small VLDL CLIC5 DR -0.126 -0.207 0.287 -0.059 0.469 -0.067 4.96E-03
Phospholipids in very small VLDL DKK3 DR -0.126 -0.138 -0.11 0.015 -0.121 -0.142 3.20E-02
Triglycerides in LDL BCAM DR -0.108 -0.186 0.122 -0.023 0.211 -0.085 1.87E-02
Triglycerides in LDL SVEP1 DR -0.108 -0.144 0.089 -0.013 0.119 -0.095 3.80E-02
Free cholesterol in very small VLDL BCAM DR -0.147 -0.13 0.122 -0.016 0.108 -0.131 4.49E-02
Free cholesterol in very small VLDL PGRC2 DR -0.147 -0.093 -0.173 0.016 -0.11 -0.163 1.76E-02
Total lipids in very small VLDL ST4S6 DR -0.134 -0.17 -0.146 0.025 -0.185 -0.158 1.01E-02
Total lipids in very small VLDL THTR DR -0.134 -0.08 -0.085 0.007 -0.051 -0.14 4.59E-02
Total lipids in very small VLDL BCAM DR -0.134 -0.161 0.122 -0.02 0.147 -0.114 2.27E-02
Total lipids in very small VLDL CLIC5 DR -0.134 -0.214 0.287 -0.061 0.458 -0.072 4.06E-03
Total lipids in very small VLDL SIRPG DR -0.134 0.133 0.212 0.028 -0.211 -0.162 2.91E-02
Total lipids in very small VLDL DKK3 DR -0.134 -0.129 -0.11 0.014 -0.106 -0.148 3.79E-02
Cholesteryl esters in very small VLDL ST4S6 DR -0.109 -0.12 -0.146 0.018 -0.162 -0.126 3.46E-02
Cholesteryl esters in very small VLDL SIRPG DR -0.109 0.14 0.212 0.03 -0.273 -0.138 2.38E-02
Cholesteryl esters in very small VLDL CLIC5 DR -0.109 -0.196 0.287 -0.056 0.516 -0.053 7.50E-03
Phospholipids to total lipids ratio in 
large LDL

NAD(P)H 
dehydrogenase

Background 
DR

0.135 0.099 0.14 0.014 0.103 0.121 1.68E-02

Polyunsaturated fatty acids RFNG PDR -0.118 0.382 0.194 0.074 -0.63 -0.192 1.80E-03
Polyunsaturated fatty acids PDE4D PDR -0.118 0.107 -0.234 -0.025 0.212 -0.093 3.55E-02
Total cholines RFNG PDR -0.107 0.312 0.194 0.061 -0.564 -0.168 8.24E-03
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Discussion
Among the major lipids analyzed, triglycerides emerged 
as the most significant risk factor, potentially contrib-
uting to disease risk through mediation by the proteins 
DKK3, ST4S6, and NEO1.Conversely, HDL choles-
terol was identified as the most potent protective factor, 
potentially reducing the risk of background DR through 
mediation by the protein RPN1. Among the causal circu-
lating metabolites, cholesteryl esters in very small VLDL 
exhibited the strongest protective effect against DR, with 
their influence mediated by the plasma proteins CLIC5 
and BCAM.For background DR, the phospholipid-to-
total lipid ratio in large LDL was identified as the most 
plausible causal metabolite, mediated by the plasma 
protein NAD(P)H dehydrogenase. Additionally, RFNG 
and PDE4D positively mediate the protective effects of 
PUFAs on PDR.

Extensive evidence indicates that inadequate control of 
triglyceride levels is associated with the onset and pro-
gression of DR, whereas elevated HDL-C levels and the 
use of lipid-lowering medications significantly dimin-
ish the risk of DR [23–25]. Our results also revealed that 
the elevated triglyceride levels can distinctly increased 
DR risk, especially, we demonstrated that reduced 
HDL-C levels can increased background DR risk with 
robust causal evidence. Proteome-wide mediation MR 
analyses identified eleven plasma proteins that medi-
ate the causal effects of triglyceride and HDL-C on DR 
outcomes, such as DKK3, ST4S6, NEO1, RDH16 and so 
on (Fig. 2A). DKK3, a crucial member of the DKK fam-
ily and an important modulator of Wnt signaling, is syn-
thesized and secreted by Muller cells. A study involving 
44 eyes from 39 patients with diabetic macular edema 
(DME) and 27 eyes from 27 controls identified signifi-
cantly elevated levels of DKK3 in the aqueous humor of 
DME patients and in human Müller cells. This research 
suggests that excessive activation of Wnt signaling, medi-
ated by elevated DKK3 levels, may contribute to neovas-
cularization and the progression of DR [26]. Conversely, 
RDH16 is integral to retinal health due to its role in effi-
ciently producing retinal reductase, which supports reti-
nol metabolism [27, 28]. Our research also indicated that 
RDH16 negatively mediated the risk impact of triglycer-
ides on DR.

Based on the analyses from both UVMR and MVMR, 
we have identified eight lipoprotein subclasses (includ-
ing six very small VLDL particles and two LDL particles) 
that are protectively associated with DR. Very small 
VLDL particles have also reported to be inversely associ-
ated with incident diabetes [29] and age-related macular 
degeneration (AMD) [30]. Furthermore, a population-
based study involving Chinese, Malay, and Indian adults 
used logistic regression to find that certain very small 
VLDL particles, consistent with our findings, such as 

cholesteryl esters in very small VLDL and LDL particles 
(including total lipids in large LDL), were protectively 
associated with moderate or more severe DR [31]. Addi-
tionally, the protein CLIC5 was found to significantly 
mediate the protective causal effect of very small VLDL 
particles on DR. While CLIC5 has also been reported 
to be significantly downregulated in glomerular tissues 
of diabetic nephropathy patients [32]. This suggests that 
the protective effect of very small VLDL particles on DR 
may, in part, be mediated through CLIC5. Our study elu-
cidated that NAD(P)H dehydrogenase mediated the risk 
effect of the phospholipid-to-total lipid ratio in large LDL 
on background DR. NAD(P)H dehydrogenase is pivotal 
in modulating cellular redox balance and energy metabo-
lism. Previous studies have shown that diabetic rats dis-
play elevated concentrations of free NAD(P)H, reflecting 
increased glycolytic activity, along with higher levels of 
bound NAD(P)H, suggesting enhanced oxidative phos-
phorylation in their retinas [33]. These observations sug-
gest that alterations in NAD(P)H dynamics, driven by 
modifications in lipid profiles, may exacerbate oxidative 
stress and metabolic dysregulation.

Our study further revealed that PUFAs and total cho-
line exhibited protective effects against PDR. PUFAs 
were generally considered beneficial [34, 35]. Notably, 
two clinical studies conducted in Europe have identi-
fied an inverse relationship between omega-6 PUFAs 
and the incidence of DR [36, 37]. Additionally, elevated 
phosphatidylcholine levels are associated with reduced 
risks of diabetes and cardiovascular diseases [38]. More-
over, our findings indicate that RFNG positively medi-
ate the protective effects of PUFAs and total cholines on 
PDR. RFNG enhances NOTCH1 activity by modifying 
O-fucose residues on specific EGF-like domains, thereby 
promoting NOTCH1 activation through DLL1 and JAG1, 
which may contribute to neurogenesis [39]. The interac-
tion between PUFAs, choline, and RFNG underscores a 
complex network of metabolic and signaling pathways 
that collectively influence retinal health. These insights 
could inform future therapeutic strategies aimed at lever-
aging these protective factors to prevent or mitigate the 
progression of DR.

Limitations
Despite the significant findings, our study has several 
limitations. First, although MR helps to infer causality by 
minimizing confounding and reverse causation, it relies 
on the assumption of no pleiotropy, meaning the genetic 
variants used as instruments should not affect the out-
come through pathways other than the exposure of inter-
est. Violations of this pleiotropy assumption could bias 
the results. Second, our analysis was based on data from 
European participants, which may limit the generaliz-
ability of our findings to other ethnic and demographic 
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groups. Third, while we identified several proteins that 
potentially mediate the effects of lipids on DR, the exact 
biological mechanisms remain to be elucidated through 
experimental studies. Additionally, the use of plasma 
lipid measurements might not fully reflect lipid metabo-
lism within retinal tissues, and tissue-specific studies 
are needed to confirm our findings. Furthermore, our 
study relies on summary-level GWAS data, which, while 
enabling large-scale causal inference, comes with inher-
ent limitations. The use of summary statistics precludes 
individual-level data analyses, limiting our ability to 
assess potential confounding factors and effect modifi-
cations at a finer scale. Independent cohort validation is 
essential to confirm the robustness and replicability of 
our findings across diverse populations. Finally, the com-
plexity of lipid metabolism and its interaction with vari-
ous metabolic pathways necessitates further investigation 
to fully understand the causal relationships identified in 
this study. Future research should focus on longitudinal 
and tissue-specific analyses to validate and extend our 
findings.

Conclusion
In conclusion, our metabolome-wide MR analysis has 
elucidated the complex relationships between lipid pro-
files and DR. We identified triglycerides as a significant 
risk factor for DR, mediated by the proteins DKK3, 
ST4S6, and NEO1, while HDL-C emerged as a potent 
protective factor, potentially reducing the risk of back-
ground DR through RPN1 mediation. Cholesteryl esters 
in very small VLDL exhibited the strongest protective 
effect against DR, mediated by CLIC5 and BCAM, while 
the phospholipid-to-total lipid ratio in large LDL was 
identified as a key causal metabolite for background DR, 
with its effects mediated by NAD(P)H dehydrogenase. 
Furthermore, the protective effects of PUFAs and total 
cholines on PDR were positively mediated by RFNG. 
These findings provide valuable insights into the meta-
bolic pathways and potential therapeutic targets for DR, 
highlighting the importance of lipid metabolism in the 
pathogenesis of this condition. Future research should 
focus on validating these results in diverse popula-
tions and exploring the underlying mechanisms through 
experimental studies.
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