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Abstract
Background Circulating immune cells reportedly affect diabetic neuropathy (DN). Although associations have been 
previously established between numerous biomarkers and diseases, elucidating their causal relationships remains 
challenging. Mendelian Randomization (MR) could overcome this difficulty by applying genetic instruments to 
discern causal links. In this study, we conducted bidirectional two-sample MR to address this problem.

Methods We used freely available genome-wide association study summary statistics. We obtained immune cell 
phenotype-related summary data from a study cohort comprising 3,757 Sardinian individuals that reported data 
concerning 731 immune cell phenotypes. We obtained DN-related summary data from the FinnGen database and 
conducted sensitivity analyses. Furthermore, we assessed horizontal pleiotropy using combined MR–Egger and MR–
Presso methods. We evaluated heterogeneity using Cochran’s Q test and applied False Discovery Rate correction to 
the findings.

Results Our MR analysis significantly associated 24 immune cell phenotypes with DN. Specifically, the presence 
of CD45 on CD66b + + myeloid cells, HLA DR on CD14 + CD16- monocytes, IgD- CD24- %B cells, and CD27 on IgD- 
CD38br lymphocytes significantly positively correlated with the risk of DN. In contrast, the presence of CD28- DN 
(CD4-CD8-) %T cells, FSC-A on HLA DR + T cells, and other four T cell types negatively correlated with DN. Finally, we 
further confirmed the relationship between different immune cell types and DN.

Conclusions We demonstrated the immunological susceptibility of DN and clarified how immune responses 
influence the course of DN. These findings might help inform immunological therapy techniques as well as novel 
targets for DN diagnosis and treatment.

Keywords Diabetic neuropathy, Immune cells, Mendelian randomization study, Causal relationship

Exploring causal correlations between 
immune cells and diabetic neuropathy: 
a Mendelian randomization
Lingfen Ji1, Puyu Li1, Nana Duan1, Jinjin Xu1, Yijuan Song1, Bohui Shu1, Lijun Liang1 and Fuli Zhao1*

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13098-025-01696-7&domain=pdf&date_stamp=2025-4-14


Page 2 of 9Ji et al. Diabetology & Metabolic Syndrome          (2025) 17:127 

Background
The most common sequelae of diabetes are a set of clini-
cal symptoms caused by autonomic and peripheral ner-
vous system-related damage, commonly referred to 
as diabetic neuropathy (DN), affecting up to half of all 
patients with diabetes and characterized by focal and dif-
fuse nervous system injuries [1]. The most common form 
of DN is diabetic peripheral neuropathy (DPN). Other 
diabetic diffuse neuropathies include the constellation of 
autonomic neuropathies, cardiac autonomic neuropathy, 
and gastrointestinal dysmotility [2].

Despite the rapid elucidation of the intricate DN etiol-
ogy over the past 10 years, there is no approved precise 
treatments remain that could target injured nerves or 
halting DN progression. Current evidence suggests that 
DN-associated pathogenesis is complex. Specifically, 
insulin resistance (IR), dyslipidemia, and hyperglycemia 
induce multiple reactions that activate the polyol, gly-
colysis, hexosamine, and advanced glycation end-prod-
uct pathways, resulting in endoplasmic reticulum stress, 
mitochondrial malfunction, DNA damage, and increased 
inflammatory factor levels, further intensifying oxida-
tive stress and inflammatory signals, finally resulting in 
DN development [3–5]. Contrary to IL-6, observed in 
other microvascular problems such as diabetic retinopa-
thy (DR) and DN, the main DPN-implicated proinflam-
matory cytokine is tumor necrosis factor-alpha (TNF-α) 
[6–8]. The phagocytic role activated macrophages fulfill 
results in demyelination, negatively affecting signal con-
duction in the nerves [9, 10]. Moreover, increased TNF-α 
levels adversely affect oligodendrocytes, potentially caus-
ing further demyelination [11]. Furthermore, TNF-α 
reportedly stimulated neurite development in sensory 
neurons in vitro through the nuclear factor kappa-B (NF-
κB) pathway. Moreover, lipopolysaccharide (LPS)-stimu-
lated macrophages reportedly produced relevant TNF-α 
levels in a high-glucose environment, whereas LPS did 
not significantly increase TNF-α in macrophages unstim-
ulated by glucose levels [12].

Autoimmunity has been traditionally considered the 
primary pathophysiology underlying type 1 diabetes. 
However, to date, most studies have investigated type 
2 diabetes pathophysiology from a metabolic perspec-
tive. Nonetheless, an increasing body of evidence exist 
concerning autoimmunity involvement in type 2 diabe-
tes, including autoantibody identification, immune cell 
infiltration into target organs and related organ function 
alteration, last but not least the response of these individ-
uals to immunosuppressive or immunoregulatory thera-
peutic interventions [13].

The function of immune cells and the occurrence of 
diabetic neuropathy are affected by many factors such 
as environment, heredity and disease, Even with the use 
of covert grouping techniques and random allocation, 

completely controlling all confounding factors in prac-
tice is extremely difficult, which invariably results in 
bias in the results. Mendelian randomization (MR) is an 
important Mendelian genetic principle-based analytical 
method for inferring causal relationships in epidemiol-
ogy. Using published summary estimates from multiple 
large-scale Genome-Wide Association Studies (GWASs), 
the two-sample MR approach provides enhanced statisti-
cal power to determine the causal relationships between 
exposure variables and outcomes. Mendelian random-
ization has been increasingly applied over recent years 
to predict the efficacy and safety of existing and novel 
drugs targeting metabolic disease, such as cardiovascu-
lar and diabetes, risk factors and to explore the repur-
posing potential of available drugs [14]. Accordingly, in 
this study, we aimed to explore the association of 731 
immune cell phenotypes with DN from a genetic varia-
tion perspective. Our discoveries could potentially help 
further elucidate the mechanisms underlying DN.

Methods
Study design
We examined the causal relationship between 731 
immune cell characteristics and DN performing a bidi-
rectional two-sample Mendelian randomization (MR) 
analysis. All genetic variations used as instrumental vari-
ables (IVs) had to meet three fundamental assumptions, 
i.e., the (1) association hypothesis (IV closely associated 
with immune cell phenotypes), (2) independence hypoth-
esis (IV independent of outcome-affecting confounding 
factors), and (3) exclusivity hypothesis (IV can only affect 
the outcome through immune cell traits) [15]. Figure  1 
presents the study flowchart ( Fig. 1 Overview of research 
design and analysis strategy). All the data we used were 
obtained from public databases, ruling out the require-
ment of an additional ethical approval.

Data sources
GWAS data sources for immune traits
In this study, we used a large-scale GWAS on data regard-
ing immune cell  d a t a (   h t t p s : / / w w w . e b i . a c . u k / g w a s /     ) , 
Which involved 731 immune cell traits in the study, rang-
ing from GCST90001391 to GCST90002121, including 
3757 non-overlapping European participants. Further-
more, it used a high-density array generated from Sardin-
ian sequence data (57% females), comprising ≈ 22 million 
single-nucleotide polymorphisms (SNPs). We applied 
flow cytometry to obtain all the data we used in this 
study. The 731 immune cell phenotypes included 118 
absolute cell counts (AC), 389 median fluorescence inten-
sities (MFIs) indicative of surface antigen expression, 
32 morphological attributes (MP), and 192 relative cell 
counts (RC) [16]. Specifically, MP characteristics com-
prised classic dendritic cells (cDCs) and TBNK panels, 

https://www.ebi.ac.uk/gwas/
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whereas those of MFI, RC, and AC encompassed cDCs, 
B-cells, T-cell maturation, myeloid cells, monocytes, and 
TBNK (T cells, B cells, and natural killer proteins).

GWAS data sources for DN
In this study, we used a compendium of GWAS sum-
mary statistics on DN (GWAS ID: finngen_R9_DM_
NEUROPATHY) extracted from the FinnGen Research 
Project (https://www.finngen.fi/en). This dataset  c o m p 
r i s e d 274,660 samples (case number = 271817, control 
number = 2843) for DN, involving a total of 20,167,091 
SNPs. To date, we could not obtain further stratifica-
tion of gender, population age, and disease course. These 
data are among the few large public databases available 
to humanity at this stage ensures our statistical efficiency. 
We performed rigorous SNP quality checks to ensure 
data robustness and result accuracy, meeting the IV 
requirements.

IV selection
To ensure that the three assumptions of the two-sample 
MR analysis were met, we applied several quality control 
procedures to select the IV that fulfilled the requirements 
and were closely associated with immune cells. First, 
when the criterion for genome-wide significance was set 
at P < 5e-8, only a small number of the 731 immune cell 
attributes showed plausible genetic mutations. There-
fore, After careful consideration, and in line with recent 
research trends, we adopted a more relaxed significance 
threshold of P < 1 × 10 − 5 for our IVs selection [17]. The 

existing constraints of accessible genetic variations 
within the study domain make this criterion a practical 
compromise, even though it is more forgiving than tra-
ditional norms. Second, we conducted linkage disequi-
librium ( Used to describe a population in which alleles 
from two or more loci appear on one chromosome at the 
same time more frequently than they appear randomly, 
and tend to be inherited together )checks to reduce SNP 
connection influence (r2 = 0.001, kb = 10,000). Third, We 
assessed IV strengths using F-statistics. To avoid bias 
resulting from weak IVs, we calculated the F-statistic and 
retained IVs with an F-value > 10. Fourth, To meet the 
assumption of independence, we identified and removed 
potential confounding factors correlated with the expo-
sure and outcome using PhenoScanner ( h t t p  : / /  w w w .  p h  
e n o  s c a  n n e r  . m  e d s c h l . c a m . a c . u k /) [18]. Hyperglycemia, 
hyperlipidemia, lipid metabolism disorders, vitamin defi-
ciency, insulin resistance, and systemic autoimmune dis-
eases might be causally related to immune cell function 
and DN. We carefully identified and subsequently elimi-
nated them to effectively reduce potential confounding 
effects. While SNPS were not allowed to be associated 
with outcome events, in fact, we found no potential DN-
associated confounders. Finally, to guarantee that the 
impact alleles for each SNP on the exposure matched 
their corresponding allelic effect on the outcome, we 
performed SNP exposure and outcome harmonization. 
However, we did not identify SNPs with mismatched 
alleles. In addition, during the harmonization phase, we 
identified and removed SNPs with ambiguous genotypes 

Fig. 1 Overview of research design and analysis strategy
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as well as palindromic SNPs. In conclusion, following a 
thorough multistep screening procedure, we carried out 
MR analysis using the remaining IVs.

Statistical analysis
We performed MR analyses using the R 4.4.1 software 
(https://www.r-project.org/) and median-weighted  a n a l y 
s i s using the Mendelian Randomization package (version 
0.6.6). Inverse Variance Weighting (IVW), MR-Egger, 
Weighted Median, Weighted Mode, and MR-Presso were 
the primary traditional MR analytic techniques we used. 
In recognition of heterogeneity between studies, we pri-
oritized positive results from the IVW approach, which 
enhanced heterogeneity consideration. Subsequently, we 
performed sensitivity tests, including heterogeneity and 
horizontal multiple validity to assess possible pleiotropy. 
We used Cochran’s Q test to gauge IV heterogeneity. We 
used MR–Egger regression for weighted linear regression 
with intercepts to identify possible horizontal pleiotropy 
(Genetic variation directly affects multiple phenotypes 
through pathways unrelated to exposure, which are inde-
pendent of each other. The violation of the exclusivity 
assumption of Mendelian randomization analysis may 
lead to bias in the estimation of causal effects )within the 
IVs. We repeated the IVW analysis after the deletion of 
irrelevant SNPs. If the P-value exceeded 0.05, we deemed 
heterogeneity and pleiotropy absent. To ascertain 
whether any one SNP significantly impacted the overall 
causal effect, a leave-one-out analysis was also carried 
out, which involved repeatedly removing each genetic 
variant from the analysis and recalculating the causative 
effect. The results are shown as 95% confidence intervals 

and odds ratios (OR). A P value of less than 0.05 was con-
sidered statistically significant. Similar techniques were 
applied to DN and reverse MR investigation of immune 
cell characteristics. Furthermore, we applied the online 
program Bioladder to perform False Discovery Rate 
(FDR) correction to address the problem with perform-
ing multiple comparisons. Based on previous studies, 
FDR < 0.05 was considered to indicate a significant causal 
association, while FDR < 0.2 was considered suggestive of 
a causal relationship.

Results
The causal inference of immunophenotypes on DN
After rigorous quality checks, we identified six immune 
cell phenotypes significantly associated with the risk of 
DN. Figure  2 presents the results of the analysis (Fig.  2 
The forest plot illustrating the causal impact of immune 
cells on the risk of DN). Specifically, IgD- CD24- %B 
cells (odds ratio [OR] = 1.075; 95% confidence inter-
val [CI], 1.010–1.142; P = 0.021; FDR = 0.048), naive 
CD4 + AC (OR = 1.272; 95% CI, 1.145–1.414; P = 7.49E-
06; FDR = 0.000), CD27 on IgD- CD38br (OR = 1.178; 
95% CI, 1.031–1.345; P = 0.016; FDR = 0.047), HLA DR on 
CD14 + CD16- monocytes (OR = 1.108; 95% CI, 1.023–
1.194; P = 0.007; FDR = 0.046), and CD4 on activated 
and secreting Tregs (OR = 1.050; 95% CI, 1.008–1.093; 
P = 0.019, FDR = 0.046) displayed a significant positive 
correlation with the risk of DN. This suggests that this 
five particular immune cell subpopulations might have a 
significant impact on Increasing the risk of DN. In con-
trast, FSC-A on HLA DR + T cells (OR = 0.951; 95% CI, 
0.916–0.988; P = 0.101; FDR = 0.048) showed a significant 

Fig. 2 The forest plot illustrating the causal impact of immune cells on the risk of DN, derived using the IVW method. OR, odds ratios; CI, confidence 
intervals; pval, P-value of the IVW method; adjustP, FDR-corrected P-value
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negative correlation with the risk of DN. These results 
suggest that this immune cell type might delay DN devel-
opment and play a protective role.

Because we adjusted the FDR to 0.08, we already 
obtained a sufficient amount of SNPS, although most 
studies believe that FDR = 0.2 indicates causality, so this 
criterion is more meaningful for our study on the basis 
of fully meeting the above requirements. After adjusted 
the FDR to 0.08, we identified associations between 
18 other immune cell phenotypes and the risk of DN. 
Among them, plasmacytoid DC %DC (OR = 1.074; 95% 
CI, 1.016–1.135; P = 0.012; FDR = 0.050), activated and 
secreting Treg %CD4+ (OR = 1.026; 95% CI, 1.003–1.049; 
P = 0.027; FDR = 0.057), CD8br NKT AC (OR = 1.106; 
95% CI, 1.002–1.106; P = 0.045; FDR = 0.055), CD28- 
CD127- CD25 + + CD8br %T cells (OR = 1.071; 95% CI, 
1.004–1.143; P = 0.039, FDR = 0.054), CD28- CD127- 
CD25 + + CD8br AC (OR = 1.066; 95% CI, 1.018–
1.116; P = 0.007; FDR = 0.051), FSC-A on myeloid DC 
(OR = 1.038; 95% CI, 1.001–1.077; P = 0.044; FDR = 0.055), 
CD45 on CD66b + + myeloid cells (OR = 1.077; 95% 
CI, 1.014–1.444; P = 0.016; FDR = 0.050), CD8 on CM 
CD8br (OR = 1.112; 95% CI, 1.007–1.229; P = 0.037; 
FDR = 0.056), and CD4 on activated Treg (OR = 1.060; 
95% CI, 1.017–1.105; P = 0.062; FDR = 0.060) were posi-
tively correlated with the risk of DN. Contrastingly, 
CM CD4+ %CD4+ (OR = 0.977; 95% CI, 0.995–0.998; 
P = 0.035; FDR = 0.055), Transitional AC (OR = 0.891; 
95% CI, 0.817–0.974; P = 0.010; FDR = 0.053),CD28- DN 
(CD4-CD8-) %T cell (OR = 0.933; 95% CI, 0.871–0.999; 
P = 0.046; FDR = 0.055),CD19 on PB/PC(OR = 0.903; 
95% CI, 0.822–0.992; P = 0.033; FDR = 0.054),CD25 on 
IgD- CD27-(OR = 0.890; 95% CI, 0.819–0.988; P = 0.028; 
FDR = 0.055), FSC-A on plasmacytoid DC(OR = 0.962; 
95% CI, 0.929–0.996; P = 0.030; FDR = 0.051), CD45 on 
lymphocyte (OR = 0.911; 95% CI, 0.837–0.990; P = 0.029; 
FDR = 0.052), SSC-A on CD4+(OR = 0.907; 95% CI, 
0.830–0.990; P = 0.028; FDR = 0.054), and CD11b on 
CD66b + + myeloid cell (OR = 0.931; 95% CI, 0.869–0.997; 
P = 0.042; FDR = 0.055) were negatively correlated with 
the risk of DN. These findings highlight the importance 
of Treg cells in modulating immune responses and pro-
vide clues for them to explore the potential role of differ-
ent T cell subpopulations in the pathogenesis of DN.

Subsequently, we conducted a horizontal pleiotropy 
test using a combination of MR–Egger and MR–Presso. 
The aforementioned results did not show any horizon-
tal pleiotropy; further, Cochran’s Q test revealed no 
heterogeneity in any outcome. Scatter plots and leave-
one-method sensitivity analyses supported these find-
ings (Supplementary Figures). We further employed a 
heatmap for visual analysis of the findings. Initially, we 
filtered out the IDs of all immune cell phenotypes with 
positive results based on P-values derived through the 

IVW method. The different colors in Fig.  3 represent 
the P-values of the sensitivity analysis results for each 
immune cell phenotype (Fig.  3 The heatmap depicting 
the IDs of immune cell phenotypes with positive results).

The causal inference of DN on immunophenotypes
Reverse MR Analysis showed no positive results. 
Although statistical analysis found that some SNPS sat-
isfied the three core assumptions, we found no mean-
ingful results when adjusted to FDR < 0.2. However, this 
does not mean that DN cannot affect the functional state 
of immune cells, and there may still be a lack of effective 
methods to discover this potential link.

Discussion
Through a two-sample bidirectional MR study, we iden-
tified a total of 24 immune cell phenotypes significantly 
associated with the risk of DN (FDR < 0.08). We identified 
no significant correlations in the reverse MR analysis. 
Now, we attempt to further discuss these positive results 
referring to the deep subpopulation classification features 
of immune cells by flow cytometry.

We observed that the risk of DN significantly correlated 
with two dendritic cell types (Plasmacytoid DC %DC 
and FSC-A on myeloid DC), two T cell maturation stage 
types (Naive CD4 + AC and CD8br NKT AC), CD45 on 
CD66b + + myeloid cells (neutrophile granulocyte), and 
HLA DR on CD14 + CD16- monocytes acting as protec-
tive factors against the risk of DN. At the same time, we 
also revealed a negative correlation of DN in four types 
of T cells (i.e., CM CD4+ %CD4+, FSC-A on HLA DR + T 
cells, CD45 on lymphocytes, and SSC-A on CD4+) and 
in FSC-A on plasmacytoid DC, CD8 on CM CD8br, and 
CD11b on CD66b + + myeloid cells.

Low-grade inflammation was involved in type 2 diabe-
tes progression onset as well as in its microvascular com-
plications, including DN [18–20]. We calculated the SII 
as platelet ×  neutrophil/lymphocyte counts [21]. Grow-
ing body of research confirms that increased SII levels 
are independently associated with an increased risk of 
DPN in Chinese patients with T2DM [22]. This discovery 
is consistent with our conclusion that neutrophils levels 
increase and that of lymphocytes decrease in patients 
with DN.

Dendritic cells are key cells in the immune system, 
responsible for capturing pathogens and transmitting 
their antigenic information to T cells, which initiates an 
adaptive immune response. In fact, dendritic cells are 
mainly derived from monocytes. Monocytes and mac-
rophages are important first line defenders in immune 
system of body. Once inflammation occurs, monocytes 
and macrophages will quickly gather to lesion area, and 
monocytes will differentiate into macrophage to destroy 
pathogens or cell fragments through phagocytosis and 
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so on. M1 macrophages secreted a large number of 
proinflammatory cytokines, resulting in IR, while M2 
macrophages secreted anti-inflammatory cytokines to 
enhance tissue repair and regeneration. Previous data 
showed in high hyperglycemic conditions, M1 macro-
phages and other immune cells are activated to express 
multiple inflammatory factors, potentially resulting 
in painful DPN and Schwann cell death. In rats with 
streptomycin-induced diabetes, TNF-α inhibition and 
MI-to-M2 macrophage phenotype conversion report-
edly induces gradual axonal morphology, nerve blood 
flow, and nerve conduction velocity recovery [23]. There-
fore, interfering with macrophages to M2 polarization 

has positive effect to attenuate diabetes complications. 
The active macrophages could be regulated by mucin 
domain-3 gene which can reducing the recruitment of 
macrophages or affecting its activation and polarization 
in future [24]. Our Mendelian study on immune cells is 
consistent with the current findings. DN is closely related 
to increased inflammatory factor-producing immune 
cell levels, including those of monocytes, macrophages, 
and granulocytes as well as lymphocyte redution. How-
ever, the specific pathogenesis of this disease is com-
plex. Inflammatory mediator (e.g., TNF-α, IL-1β, IL-6, 
or other inflammatory factors) release would activate 
various inflammatory signaling pathways (e.g., NF-κB or 

Fig. 3 The heatmap depicting the IDs of immune cell phenotypes with positive results
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signal transducer, activator of transcription 3), resulting 
in organ damage [24]. Therefore, TNF-α downregula-
tion likely further improves DN by affecting subsequent 
inflammatory pathways, thereby providing an area for 
more exploration. To date, TNF-α blockers have been 
studied using infliximab, adalimumab, and etanercept. 
Our findings indicated that Transitional AC (Transitional 
B cell type), CD19 on PB/PC (plasmacyte cell), and CD25 
on IgD- CD27- (a memory B cell type) act as protec-
tive factors against the risk of DN, while another two B 
cell types (i.e., IgD- CD24- %B cells and CD27 on IgD- 
CD38br) increase the risk of DN. B lymphocyte chemo-
taxis in the adipose tissue recruits more immune cells to 
produce pro-inflammatory cytokines and autoantibodies 
[25], thereby creating a vicious cycle of self-specific adap-
tive immune responses in the adipose tissue that disrupts 
insulin signaling [26]. Accordingly, the B lymphocyte 
population is increased in order to accelerate IR develop-
ment [27]. However, we also observed that three B cell 
types represented protective factors against DN. B lym-
phocytes might suggestibly play a dual role in DN, and 
certain regulatory B lymphocytes could exert a protective 
effect, which requires confirmation in future studies.

Furthermore, we discovered that up to 6 regula-
tory lymphocyte types, i.e., CD28- DN (CD4-CD8-) 
%T cells, activated and secreting Tregs %CD4+, CD28- 
CD127- CD25 + + CD8br %T cells, CD28- CD127- 
CD25 + + CD8br ACs, CD4 on activated Tregs, and CD4 
on activated and secreting Tregs, exhibited a significant 
risk relationship with DN. Regulatory lymphocytes are 
reportedly implicated in type 1 diabetes pathogenesis. 
Recent studies described that Tregs might influence type 
2 DN [28]. To preserve immunological homeostasis, 
Tregs (CD4 + CD25 + CD127-/lowFoxp3+), represent-
ing adaptive immune system components, might attenu-
ate the immune response [29, 30]. Taken together, Treg 
modification might offer a new and promising approach 
for the treatment and prevention of diabetes mellitus 
and its sequelae [31]. Lymphocyte upregulation report-
edly improves or repairs nerve damage [32]. Further-
more, doubting whether Treg plays a role by influencing 
inflammatory cell (e.g., monocyte, T cell, macrophage, 
and granulocyte) function through certain mechanisms 
is reasonable. Enhancing regulatory cell function could 
contribute to DN progression weakening. Our analy-
sis yielded more nuanced results that paved the way for 
follow-up investigations. Nevertheless, whether regula-
tory lymphocytes undergo dynamic changes in the dis-
ease course is worth further consideration. Accordingly, 
further studies are warranted to validate our results and 
explore the potentially involved mechanisms.

Evidence suggests certain gut microbe involvement in 
DN occurrence and development by influencing inflam-
matory responses, lipid and blood sugar levels, and 

directly affecting the nervous system even via the gut–
brain axis [33, 34]. Therefore, intestinal probiotics regula-
tion could open an avenue of new methods and strategies 
for DN treatment.The GM appears to play a role at the 
intersection of the gut brain and the neuroimmune-endo-
crine axis, forming a complex network that can influence 
the nervous system [35]. At present, the mechanism of 
action between GM and DN has not been fully deter-
mined, but some previous studies have explored several 
possible mechanisms between GM and DN. First, it may 
induce inflammatory response and immune activation, 
and release cellular inflammatory factors and chemo-
kines (such as toll-like receptors, NF-κB) to impair nerve 
function; Second, metabolites of intestinal flora, such as 
short-chain fatty acids (SCFAs), amino acids, trimethyl-
amine oxide (TMAO), bile acids and indopropionic acid, 
are mainly involved in host metabolism and intestinal 
integrity, thereby regulating and affecting nerve function 
[36–37]. Therefore, the regulation of intestinal probiotics 
may be throught affect immune cells and inflammatory 
factors and become a new method and strategy for the 
treatment of DN.

Different immune cells may have opposite conse-
quences through certain mechanisms. More research 
about immune cell profiling become a routine test for 
assessing risk in diabetic patients, or could immune-tar-
geted therapies be explored for preventing or managing 
DN might be a new perspective.

In this study, we applied large sample sizes and com-
prehensive GWAS datasets to conduct bidirectional 
two-sample MR analyses, thereby significantly improv-
ing statistical efficiency. In addition, our results rely on 
genetic IVs and we used various reliable MR techniques 
to investigate causal relationships. To account for false-
positive results in multi-hypothesis testing, we also 
applied FDR correction to adjust for multiple compari-
sons-related statistical bias.

However, this study has several limitations. First, 
despite several sensitivity studies, we could not com-
prehensively assess horizontal pleiotropy. Second, the 
lack of individual-level data impeded stratified popula-
tion analysis. Therefore, we could not further investigate 
whether gender, age, and disease stage would differently 
affect the results. Third, since we based our conclusions 
on European databases, they cannot be directly applied 
to other nations without careful consideration. Finally, 
in this study, we applied loose criteria, which might have 
resulted in more false positives. However, this allowed 
for a more thorough assessment of the strong association 
between immunity and DN. Further extensive clinical 
studies would be required to confirm these findings and 
inform clinical judgments.
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Conclusions
In this study, we revealed the causal relationships 
between immune cell phenotypes and DN. Our discover-
ies provide novel insights that could potentially facilitate 
the elucidation of the pathogenic mechanisms underlying 
DN as well as potential therapeutic target identification.
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