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triglycerides into free fatty acids (FFAs), which provide 
energy for other organs, such as the liver, bones, heart 
muscle, pancreas, and brain, during fasting or exercise 
[2]. Excess FFAs cause lipid toxicity, inhibit insulin sig-
naling, and enhance liver glucose production [3]. There-
fore, proper energy storage regulation in adipose tissue 
is crucial for maintaining insulin sensitivity and glucose 
metabolism homeostasis.

White adipose tissue (WAT) accounts for > 90% of the 
total adipose tissue volume, and one of its most important 
functions is stable triglyceride storage. WAT is catego-
rized into subcutaneous adipose tissue (SAT) and visceral 
adipose tissue (VAT). Lipids are preferentially stored in 
the SAT, and VAT is considered an indicator that the SAT 
is not storing more energy [4]. Studies across gender, age, 
body mass index (BMI) levels, and ethnic groups revealed 
that VAT plays a different and more adverse metabolic 
role than SAT and may be associated with an excessive 
increase in FFA levels and inflammatory response [5]. 
Additionally, WAT demonstrates the endocrine function 

Introduction
Type 2 diabetes (T2D) is a chronic metabolic disorder 
characterized by decreased insulin sensitivity. Insu-
lin normally regulates blood glucose levels within the 
physiological range by facilitating glucose uptake and 
suppressing glucose production and release by the liver. 
Pancreatic β cells in T2D are unable to produce sufficient 
insulin to counteract systemic insulin resistance causing 
elevated circulating blood sugar levels [1]. However, T2D 
is a relatively complex disease involving several patho-
physiological mechanisms.

Adipose tissue is the body’s largest energy storage 
depot. It transforms excess energy into triglycerides for 
storage during nutrient intake periods. It breaks down 
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Abstract
White adipose tissue (WAT) is highly flexible and was previously considered a passive location for energy storage. 
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ability to secrete many adipokines that regulate metabolism. WAT is one of the core tissues that influence insulin 
sensitivity. Its dysfunction enhances insulin resistance and type 2 diabetes (T2D) progression. However, T2D may 
cause WAT dysfunction, including changes in distribution, metabolism, adipocyte hypertrophy, inflammation, aging, 
and adipokines and free fatty acid levels, which may exacerbate insulin resistance. This review used PubMed to 
search WAT dysfunction in T2D and the effects of these changes on insulin resistance. Additionally, we described 
and discussed the effects of antidiabetic drugs, including insulin therapy, sulfonylureas, metformin, glucose-like 
peptide-1 receptor agonists, thiazolidinediones, and sodium-dependent glucose transporters-2 inhibitors, on WAT 
parameters under T2D conditions.
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and produces adipokines that impact human glucose 
metabolism and insulin sensitivity, including protein-like 
hormones secreted by adipocytes and inflammatory fac-
tors secreted by immune cells in adipose tissue, which 
affect glucose metabolism through different mechanisms 
or interactions. Previous literature suggests that patho-
logical WAT changes due to obesity, aging, lipodystro-
phy, and other factors may promote insulin resistance 
and T2D [6–8]. However, the potential etiological role of 
T2D in WAT should not be neglected. Changes in T2D-
induced WAT distribution and dysfunction may increase 
insulin resistance and speed T2D progression (Fig.  1). 
Herein, we focused on pathological WAT changes in T2D 
and their possible effects on insulin resistance, and dis-
cussed the effects of antidiabetic drugs on WAT param-
eters under.

WAT distribution and function
WAT is categorized into SAT and VAT based on its ana-
tomical location. SAT is the primary location for tri-
glyceride storage, characterized by lower lipolysis and 
improved lipogenic activity, thereby safeguarding insu-
lin-sensitive tissues from lipotoxic effects [9]. However, 
it exhibits a limited ability to expand, according to the 
ability of fat cells to expand and/or recruit new cells to 
store excess fat. Excess triglycerides surpassing the SAT 

capacity are abnormally deposited in and around inter-
nal organs. More studies currently focus on epicardial 
adipose tissue, perirenal adipose tissue, omental adipose 
tissue, and intrahepatic adipose deposition. Compared 
to SAT, VAT demonstrates greater lipolysis activity and 
lower triglyceride synthesis capacity and is present in 
small amounts in healthy, lean individuals [4].

Research into WAT has intensified in recent years. 
WAT is not only recognized as an organ regulating 
energy homeostasis but is also considered an endocrine 
organ, secreting a variety of bioactive peptides and pro-
teins, also known as adipokines. White adipocytes pro-
duce molecules, such as adiponectin, omentin-1, vaspin, 
visfatin, leptin, and resistin, which exhibit beneficial to 
detrimental effects on glucose metabolism and insulin 
sensitivity [10]. Additionally, under pathological condi-
tions, white adipocytes and resident immune cells in 
WAT release inflammatory mediators, such as tumor 
necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, 
and monocyte chemoattractant protein-1 (MCP-1), 
which impair the insulin signaling pathway [11].

Changes in WAT distribution in T2D
We used keywords (type 2 diabetes) AND (adipose tis-
sue) AND (distribution) to search literatures in PubMed, 
reviewed clinical studies, and summarized the changes 

Fig. 1 Interactions between T2D and WAT. T2D causes changes in WAT distribution and metabolism, adipocyte hypertrophy, WAT inflammation, lipotox-
icity, WAT aging, and dysregulation of adipokines. These pathological changes may further contribute to the progression of insulin resistance and T2D. 
Abbreviation: WAT: white adipose tissue; SAT: subcutaneous adipose tissue; VAT: visceral adipose tissue; IMAT: intermuscular adipose tissue; ASCs: adipose 
tissue-derived mesenchymal stem cells; APCs: adipocyte progenitor cells; PAI-1: plasminogen activator inhibitor-1; ZMAT3: zinc finger matrin-type 3; FFAs: 
free fatty acids
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in WAT distribution among T2D patients (S. Table  S1). 
Patients with T2D demonstrated reduced SAT compared 
to healthy individuals [12–14]. This may be due to the 
limited expansion ability of SAT in T2D. Conversely, VAT 
is a more significant T2D biomarker than SAT, and it is 
strongly associated with glucose intolerance and insulin 
resistance. VAT area generally increased in patients with 
T2D compared to healthy subjects [14–16]. Addition-
ally, Miyazaki et al. investigated the relationship between 
insulin sensitivity and fat distribution in male and female 
patients with T2D. They revealed that female patients 
with T2D demonstrated significantly higher body fat 
than male patients with T2D [17]. All the increase in total 
body fat in female patients was due to the increase in 
SAT area. The area of VAT was not significantly different 
between male and female patients. However, they dem-
onstrated similar muscle and liver insulin resistance lev-
els. The experimental result analysis revealed that muscle 
and liver insulin resistance was positively correlated with 
VAT area, regardless of gender.

Furthermore, a cross-sectional study revealed that 
obese patients with T2D exhibit higher liver and trunk 
fat mass but lower leg fat mass, compared to those with 
only obesity [18]. A similar case-control study in older 
participants revealed a reduced leg fat mass in patients 
with T2D [13]. These observations indicate that central 
obesity is a characteristic feature in patients with T2D. A 
13-year longitudinal study emphasized higher and lower 
prevalence of central and peripheral obesity, respectively, 
in the T2D group among middle-aged black South Afri-
can females in urban areas, indicating the importance of 
preventing central obesity to reduce T2D incidence [16].

Notably, cross-sectional studies reveal increased inter-
muscular adipose tissue (IMAT) in patients with T2D 
[14, 15]. This increase in IMAT, related to muscle mass 
decline, strongly correlated with insulin sensitivity, 
despite representing a small proportion of thigh adipose 
tissue [19]. Thus, these studies collectively indicate that 
T2D causes WAT redistribution.

WAT dysfunction in T2D
WAT metabolism
The connective tissue around mature white adipocytes 
contains a stromal vascular fraction, consisting of adi-
pose tissue-derived mesenchymal stem cells (ASCs) and 
adipocyte progenitor cells (APCs), which are the differ-
entiation sources of mature white adipocytes. These adi-
pocytes, together with immune cells and blood vessels, 
maintain WAT stability. Mature white adipocytes renew 
at a rate of 8% per year; hence, the ability of ASCs and 
APCs to differentiate into healthy mature adipocytes is 
important for WAT metabolism [20].

In T2D rats, surface markers of ASCs were significantly 
reduced, and in vitro study has shown an increase in ASC 

apoptosis and a decline in their proliferation [21]. ASCs 
from T2D mice also exhibited decreased proliferation 
ability, which recovered after two or three generations of 
cell culture, indicating that the hyperglycemic environ-
ment caused the proliferation inhibition effect of ASCs 
[22]. This reduction in cell proliferation correlates with an 
uptick in reactive oxygen species (ROS) generation due to 
hyperglycemia. As pointed out by Cheng et al., treating 
human ASCs with the ROS inhibitor N-Acetyl-L-cysteine 
mitigated the high glucose-induced proliferation inhibi-
tion [23]. Cellular senescence also appears to diminish 
ASC proliferation. According to an in vitro study, human 
ASCs cultured under long-term high glucose conditions 
showed lower proliferative activity and increased senes-
cence-associated β-galactosidase (SA-β-Gal) compared 
to those cultured under long-term low glucose condi-
tions [24]. Another in vitro study demonstrated that high 
glucose can induce senescence in mesenchymal stem 
cells by promoting the phosphorylation of protein kinase 
B (AKT) and mammalian target of rapamycin [25]. Addi-
tionally, T2D causes ASCs to lose the ability to differenti-
ate into mature and functional adipocytes. Barbagallo et 
al. reported the severely impaired adipogenic differentia-
tion ability of ASCs from patients with T2D. Gene pro-
files of all adipogenic markers were hardly expressed in 
T2D ASCs after induced differentiation [26].

The healthy state of APCs is crucial for WAT func-
tion. Raajendiran et al. [27] determined three pheno-
types from WAT APCs, including APCs with high, 
low, and no CD34 expressions. CD34highAPCs demon-
strated a higher lipolysis rate than CD34lowAPCs and 
CD34−APCs after differentiation into mature white adi-
pocytes. Moreover, CD34highAPCs exhibited a higher 
FFA uptake rate than mature white adipocytes differen-
tiated from CD34lowAPCs and CD34−APCs, which were 
not strongly regulated by the anatomical location of 
WAT. Overall, CD34highAPC-differentiated mature white 
adipocytes demonstrated a significantly higher lipid turn-
over. The increase in CD34highAPCs and the decrease in 
CD34−APCs in patients with T2D may provide a poten-
tial basis for the metabolic dysregulation of mature white 
adipocytes [27].

Mature white adipocytes regulate lipid turnover by 
synthesizing triglycerides and breaking them down 
through lipolysis [28]. Normally, lipid turnover is gradual, 
with triglycerides exhibiting a half-life ranging from 6 to 
9 months [29]. Nevertheless, insulin resistance can dis-
rupt this balance.

Allister et al. observed a marked decline in triglycer-
ide synthesis in the SAT of individuals with insulin resis-
tance compared to those who are insulin sensitive [30]. 
Furthermore, plasma FFAs measured during an insulin 
suppression test were 2.5-fold higher in insulin resis-
tance subjects compared to insulin sensitive individuals 
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[30]. FFA esterification is dependent on insulin-mediated 
glucose uptake in adipocytes and the supply of glycol-
ysis-derived glycerol-3-phosphate [31]. T2D reduces 
insulin-stimulated glucose uptake in WAT. The glucose 
uptake rate is reduced by 2–8-fold in WAT of T2D mice 
[32]. This may reduce the supply of glycerol-3-phosphate 
affecting triglyceride synthesis. Additionally, insulin 
is an antilipolytic hormone, and the decline of insulin 
sensitivity in T2D reduces its antilipolytic ability [33]. 
These two aspects cause the metabolic dysregulation of 
mature white adipocytes. Thiazolidinediones (TZDs) 
are hypoglycemic agents that directly act on adipose tis-
sue. Increasing insulin-stimulated WAT glucose uptake, 
improving FFA esterification and antilipolytic ability of 
insulin are one of the effects of TZDs (troglitazone/rosi-
glitazone) therapy [34].

WAT needs to mediate the supply of oxygen, nutri-
ents, hormones, stem cells, and immune cells from cir-
culation to WAT through microvessels [35]. Incorrect 
microvascular growth may limit the transmission of the 
abovementioned factors, inhibit lipogenesis, and cause 
relative hypoxia and subsequent inflammatory response, 
thereby exacerbating metabolic dysfunction [36]. The 
SAT of T2D rats exhibits impaired microvascular growth 
ability was observed in Ferrer-Lorente et al. [21]. Improv-
ing adipose tissue angiogenesis, specifically in SAT, may 
contribute to the proper storage of fat and increase insu-
lin sensitivity. Short-term treatment (6 weeks) with rosi-
glitazone increased capillary density and small adipocyte 
formation in SAT in overweight and obese individuals 
[37]. Moreover, T2D ASC demonstrated less vascular 
endothelial growth factor (VEGF) secretion [38]. Geale-
kman et al. investigated the mechanism whereby rosigli-
tazone promotes angiogenesis in WAT, finding that the 
VEGF system may explain why rosiglitazone promotes 
angiogenesis in WAT. mRNA expression of VEGFA and 
VEGFB was significantly increased in the adipocytes 
from rosiglitazone-treated animals. Furthermore, use of 
DMEM supplemented with purified VEGFA to culture 
purified microvascular endothelial cells from epididy-
mal adipose tissue can increase capillary formation [39]. 
Additionally, rosiglitazone is a peroxisome proliferator-
activated receptor gamma (PPARG) agonist. Angiopoi-
etin-like factor-4 is mainly expressed in adipose tissue 
and a direct target of PPARG [40]. In adipocytes from 
rosiglitazone-treated animals, angiopoietin-like factor-4 
protein expression was significantly increased. As this 
protein from adipocytes can stimulate endothelial cell 
growth and differentiation, angiopoietin-like factor-4 
may be involved in the angiogenic properties of WAT 
promoted by rosiglitazone [39].

Adipocyte hypertrophy
Adipose tissue expansion, which begins during the sec-
ond trimester of pregnancy, continues throughout life. 
This dynamic process occurs through two mechanisms: 
increasing adipocyte size and number. Sun et al. [41] 
described this increase in adipocyte number as healthy 
adipose tissue expansion, stating that it lessens inflam-
matory response. Conversely, pathological expansion 
is characterized by adipocyte hypertrophy, resulting in 
high-grade inflammation and extensive fibrosis. In clini-
cal studies, white adipocytes of both patients with T2D 
with and without obesity demonstrated a hypertrophic 
phenotype [42–45], which may be associated with the 
decreased proliferation ability of ASCs in T2D WAT and 
the reduced differentiation ability into mature white adi-
pocytes, especially in SAT. Gustafson et al. [46] revealed a 
decreased expression of PPARG and glucose transporter 
4 (GLUT4) in the SAT of patients with T2D. Further-
more, PPARG, a key transcription factor for adipocyte 
differentiation, is crucial, as its genetic deletion entirely 
prevents adipocyte formation. A rapid loss of adipose 
tissue and severe insulin resistance develop in mice with 
adipose-specific PPARG knockout [47]. GLUT4 not only 
facilitates glucose uptake but also increases adipocyte 
differentiation [48]. Additionally, increased adipose-spe-
cific GLUT4 expression counteracts insulin resistance 
caused by genetic GLUT4 deletion in muscle in mice 
[48]. However, reduced PPARG and GLUT4 expressions 
impede adipocyte differentiation, thereby limiting SAT’s 
triglyceride storage capacity. This may help increase VAT 
and pathological adipocyte expansion. Additionally, adi-
pocyte hypertrophy is identified as a risk factor for T2D. 
Weyer et al. [49] revealed that increased adipocyte size, 
rather than obesity, is associated with a higher risk of 
T2D. Genetic susceptibility to T2D is associated with 
adipocyte hypertrophy caused by impaired adipocyte 
differentiation in SAT [50]. Henninger et al. [51] demon-
strated that adipocyte hypertrophy in SAT in non-obese 
individuals at risk of T2D is associated with reduced 
insulin sensitivity, accompanied by signs of inflammation 
and fibrosis, in contrast to healthy subjects.

WAT inflammation
WAT inflammation is one of the important factors in 
developing insulin resistance and T2D. WAT contains 
most types of immune cells. Clinical and animal stud-
ies revealed the involvement of eosinophils, neutrophils, 
type 1 innate lymphoid cells (ILC1s), plasmacytoid den-
dritic cells (pDCs), T cells and macrophages, and ASCs 
in the inflammatory process underlying WAT in T2D as 
well as possible interactions between them (Fig. 2).
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Eosinophils
Eosinophils are innate immune system cells that are 
abundant in healthy WAT [52]. They mainly express IL-4 
in WAT, induce M2-type macrophage polarization [53]. 
An Animal study revealed that increasing the number of 
eosinophils in WAT can enhance insulin sensitivity and 
glucose tolerance by promoting M2-type macrophage 
polarization [54]. SAT in patients with T2D contains 
fewer eosinophils than in those with normal glucose 
tolerance [55], which may be detrimental to immune 
homeostasis and glucose metabolism.

Neutrophils
Neutrophils are not as common in healthy WAT; more-
over, their increase may have a major negative role 
in WAT homeostasis [56]. An intestinal metabolite, 
3-hydroxydecanoate, increases with the degree of insu-
lin resistance in obese patients with T2D [57]. A study 
in mice revealed that 3-hydroxydecanoate increases tis-
sue inflammation and immune cell migration in WAT, 
which is associated with increased neutrophil numbers 
in SAT as well as neutrophils and macrophages in VAT 
[57]. One potential explanation for the lack of effect on 
macrophage recruitment to SAT may be that neutrophil 
recruitment precedes macrophage recruitment and VAT 

contains more immune cells than SAT; thus, the response 
to inflammation may be more obvious [55]. Studies 
revealed that neutrophils secrete neutrophil elastase, 
and neutrophil elastase reduction inhibits macrophage 
infiltration, which is accompanied by glucose tolerance 
improvement and insulin sensitivity elevation [58]. In 
T2D, there is not only an upsurge in lipolysis but also 
in FFA levels [31]. These FFAs, released during lipolysis, 
act upon cells expressing 5-lipoxygenase, leading to the 
production of leukotriene B4, which facilitates neutrophil 
recruitment [59]. Interactions between neutrophils and 
adipocytes via the nuclear factor-κB (NF-κB) pathway 
result in high production of IL-1β from neutrophils and 
the release of chemokines like MCP-1 and MCP-3 from 
adipocytes, increasing macrophage infiltration and fos-
tering M1-type polarization [59].

ILC1s
Patients with T2D demonstrated increased numbers of 
ILC1s in VAT [60]. Elevated levels of ILC1s in VAT may 
enhance adipose tissue insulin resistance by increasing 
the release of FFA, ultimately leading to systemic insulin 
resistance and subsequent hyperglycemia [60]. Addition-
ally, an animal study revealed that ILC1s accumulation in 

Fig. 2 WAT inflammation in T2D. In WAT affected by T2D, white adipocytes exhibit a hypertrophic phenotype and facilitate polarization of M1-type mac-
rophages through IL-6, TNF-α, and MCP-1 secretion. Additionally, neutrophils, ILC1s, pDCs, and CD4 + T cells, including Th1 and Th17, contribute to this 
polarization by secreting IL-1β, IFN-γ, IFN-1, and IL-22. Conversely, eosinophils and Tregs have been shown to favor M2 macrophage polarization and sup-
press M1 macrophage polarization, respectively. However, presence of eosinophils and Tregs is reduced in WAT in the context of T2D. Moreover, ASCs from 
patients with T2D display diminished immunosuppressive capabilities, impairing their ability to support M2 macrophage polarization and restrict the 
proliferation of CD4 + T cells. These altered ASC functions further contribute to the enhanced proliferation of B cells, which in turn promotes an increase 
in Th17 cells. Abbreviation: ASCs: adipose stem cells; ILC1s: innate lymphoid cells; pDCs: plasmacytoid dendritic cells; Tregs: T regulatory lymphocytes; 
Th1: T helper lymphocyte 1;Th17: T helper lymphocyte 17; IL-1β: interleukin-1β; IFN-γ: interferon-γ; IFN-1: interferon-1; IL-22: interleukin-22; TNF-α: tumor 
necrosis factor-α; IL-6: interleukin-6
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WAT causes interferon-γ to increase drive M1-type mac-
rophage polarization and insulin resistance [61].

Dendritic cells
Innate and adaptive immune responses are linked 
through dendritic cells, as they can trigger or suppress 
immune responses depending on their maturity state 
[62]. Mature dendritic cells are categorized into two sub-
types, conventional dendritic cells and pDCs. β-Catenin-
secreted conventional dendritic cells increase insulin 
reserve to improve T2D development [63]. The number 
of conventional dendritic cells in SAT and epicardial adi-
pose tissue was similar between patients with T2D com-
pared and healthy controls. However, T2D increases the 
number of pDCs in SAT and epicardial adipose tissue 
[64]. pDCs promote a pro-inflammatory state and secrete 
type I interferons through MyD88-dependent signal-
ing cascades, resulting in macrophage recruitment and 
M1-type polarization [65].

T cells
T cells, the backbone of adaptive immunity, are catego-
rized into CD8 + and CD4 + subsets, and the latter can be 
subcategorized into T regulatory lymphocytes (Tregs) 
and T helper lymphocytes (Th): Th1, Th2, and Th17. 
WAT changes in T2D include increased Th1 and Th17 
cell numbers and decreased Treg numbers. However, Th2 
changes in WAT during T2D have not been sufficiently 
investigated thus far.

Dalmas et al. [66] revealed that CD4 + T cells increased 
in WAT of patients with T2D and obesity compared with 
those with only obesity, and CD4 + T cells interact with 
macrophages. Elevated blood sugar levels increase mac-
rophage-derived IL-1β in WAT, one of the major pro-
inflammatory factors secreted by M1-type macrophages. 
Elevated IL-1β stimulates CD4 + T cell transformation 
into pro-inflammatory Th17 cells and pro-inflammatory 
cytokines, IL-17 and IL-22, secretion. IL-22 increases 
IL-1β release by activating the C-Jun pathway in macro-
phages. Additionally, CD4 + T cell infiltration and pro-
inflammatory phenomena were observed in VAT of T2D 
mice, indicating the increase of Th1 cells and decrease of 
Tregs, in addition to Th17 cell elevation [67]. Interferon-γ 
secreted by Th1 cells has promoted M1-type polarization 
of macrophages and enhanced insulin resistance [67]. 
The increase of Tregs in WAT reduces TNF-α and IL-1β 
expression and inhibits insulin resistance [68]. These 
indicate that T cells in WAT in T2D develop in a pro-
inflammatory direction, which may further cause meta-
bolic disorders.

Macrophages
Macrophages are key executors of downstream effects in 
immune response, and their polarization is categorized 

into classically activated (M1-type macrophage) and 
alternatively activated (M2-type macrophage). M1-type 
macrophages have a pro-inflammatory phenotype, 
which promotes the development of insulin resistance by 
secreting pro-inflammatory factors such as TNF-α, IL-1β 
and IL-6; however, inhibiting the polarization of M1-type 
macrophages in WAT can improve insulin resistance 
[69, 70]. M2-type macrophages are an anti-inflammatory 
phenotype that inhibits inflammation by secreting anti-
inflammatory factors, such as IL-4 and IL-10. Further-
more, Ying el at. reported that M2-type macrophages 
secrete exosomes containing miRNA-690, which can 
improve glucose tolerance and insulin sensitivity [71]. 
Macrophage infiltration is less in healthy WAT, and mac-
rophages appeared to be M2-type polarization [72]. The 
increase of macrophage infiltration and M1/M2 ratio 
indicate the transition of the WAT environment to a pro-
inflammatory direction. The M1/M2 ratio in SAT and 
VAT in obese patients with T2D was significantly higher 
than that in healthy patients with obesity [73].

The size of adipocytes is a crucial determinant of mac-
rophage infiltration and M1-type polarization, in addi-
tion to the influence of immune cells on macrophage 
infiltration and polarization described above. A posi-
tive correlation exists between the M1/M2 macrophage 
ratio and adipocyte size in abdominal SAT in patients 
with T2D with no obesity [43]. Adipocyte hypertrophy 
increases secretion of IL-6, TNF-α, and MCP-1 [11]. 
These pro-inflammatory factors improve macrophage 
infiltration into adipose tissue. Transgenic expression of 
MCP-1 in adipose tissue increases macrophage infiltra-
tion, inflammation, and insulin resistance. Conversely, 
disrupting MCP-1 hinders macrophage migration to 
adipose tissue, thereby diminishing inflammation and 
enhancing insulin sensitivity [74]. IL-6 and TNF-α pro-
duction by adipocytes is crucial for macrophage accu-
mulation in WAT and related to M1-type macrophage 
polarization [75].

Adipocytes trigger death when they reach a critical size 
[76]. Macrophages, surround dead or dying adipocytes, 
form a “crown-like structure,” whose density positively 
correlates with adipocyte size [77]. Despite similar cell 
sizes, visceral adipocytes are more prone to death than 
subcutaneous ones, and thu s, contain more crown-like 
structures [76, 78]. The expression of M1-type mac-
rophage markers is positive and M2-type macrophage 
markers are negative in these structures, indicating a pro-
inflammatory state [77]. Women with obesity with T2D 
demonstrate a higher count of crown-like structures in 
both SAT and VAT compared to those with obesity with 
normal glucose tolerance of similar age and weight [79].
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ASCs
ASCs have powerful anti-inflammatory effects and can 
regulate the immune system by secreting anti-inflam-
matory cytokines and growth factors [80], whereas 
T2D-derived ASCs can reduce immunosuppressive func-
tions. Healthy receptor-derived ASCs limit the prolif-
eration and pro-inflammatory polarization of CD4 + T 
cells but T2D-derived ASCs demonstrate impairment of 
this function [67]. Moreover, ASCs from patients with 
T2D markedly increase B cell proliferation [81]. Defuria 
et al. [82] revealed that B cells are crucial in regulating 
T2D inflammation due to their direct role in improving 
the activity of Th17 cells and secreting the pro-inflam-
matory cytokine IL-17. Additionally, Serena et al. [81] 
showed that NOD-like receptor thermal protein domain 
associated protein 3 signaling pathway activation in T2D 
ASCs reduced the effect of ASCs in inhibiting lympho-
cyte proliferation and activating M2-type macrophages 
compared with those with obesity of similar weight. This 
evidence indicates that T2D impairs the immunomodula-
tory properties of ASCs and may be detrimental to the 
immune balance in WAT.

WAT aging
Gustafson et al. revealed that mature adipocytes in SAT 
in patients with T2D exhibit a senescent phenotype, 
closely associated with systemic insulin resistance and 
adipocyte size [46]. Senescence markers, such as SA-β-
Gal, plasminogen activator inhibitor-1 (PAI-1), p53, and 
zinc finger matrin-type 3 (ZMAT3), were markedly ele-
vated in mature adipocytes of patients with T2D com-
pared to those with obesity with similar body weight 
[46]. SA-β-Gal, a widely recognized senescence marker, 
exhibits activity in SAT that is sevenfold higher than in 
omental adipose tissue, and it correlates positively with 
insulin resistance indicators [83]. A significant portion 
of circulating PAI-1 originates from adipose tissue, with 
more secreting VAT than SAT [84]. Hyperglycemia stim-
ulates PAI-1 secretion from human adipocytes in both 
dose- and time-dependent manners in vitro [85]. PAI-1 
activates p53, which accelerates the aging process. T2D 
model mice indicated that elevated p53 expression in 
adipose tissue provokes an inflammatory response and 
exacerbates insulin resistance. Conversely, inhibiting p53 
activity in adipose tissue greatly ameliorates age-related 
changes and insulin resistance [86].

T2D-induced adipocyte senescence hinders adipo-
cyte differentiation. The deletion of the p53 inhibitor 
murine double minute 2 in adipocytes impairs adipogen-
esis, causing severe insulin resistance and glucose intol-
erance [87]. ZMAT3, which is highly associated with 
aging, is prominently expressed in first-degree relatives 
of patients with T2D. ZMAT3 overexpression in preadi-
pocytes activates the p53 pathway, inhibiting adipocyte 

differentiation, indicating that early-life preadipocyte 
senescence contributes to genetic susceptibility to T2D 
[88]. Agareva et al. [89] revealed that T2D affects the 
differentiation potential of ASCs. ASCs typically differ-
entiate into chondrogenic, osteogenic, and adipogenic 
lineages. However, elevated SA-β-Gal expression shifts 
differentiation toward osteogenesis, inhibiting adipocyte 
differentiation, in ASCs from patients with T2D. These 
results indicate that T2D-induced aging of WAT may fur-
ther exacerbate insulin resistance progression.

Lipotoxicity
Lipolysis is the process by which adipocytes release FFAs. 
This process is regulated by the counteracting effects of 
catecholamines and insulin. Insulin, an antilipolytic hor-
mone, exhibits a well-established inhibitory influence 
on lipolysis. The recognized mechanism involves insulin 
binding to its receptor on adipocyte membranes, thereby 
initiating tyrosine phosphorylation. Insulin receptor sub-
strates 1 and 2 (IRS-1 and IRS-2) interaction activates 
the phosphatidylinositol 3-kinase (PI3K) complex. Sub-
sequently, PI3K phosphorylates AKT and activates phos-
phodiesterase 3B (PDE3B), which degrades cyclic AMP, 
thereby diminishing protein kinase A (PKA) activity and 
exerting an antilipolytic effect [33, 90, 91]. Insulin resis-
tance disrupts this balance, thereby releasing FFAs into 
the cytoplasm and causing their entry into circulation. 
Patients with T2D, with matched gender, age, and BMI 
with those having normal glucose tolerance, demonstrate 
significantly higher plasma FFA levels [92].

Notably, increased FFA levels are also implicated in 
the progression of T2D. FFAs from VAT directly influ-
ence the liver via the portal vein [31], enhancing gluco-
neogenesis through the allosteric activation of pyruvate 
carboxylase by acetyl-CoA [93]. Furthermore, FFAs aug-
ment glucose production by upregulating the expression 
of glucose-6-phosphatase in the liver.

 [94]. Additionally, FFAs stimulate NADPH oxidase 
through protein kinase Cδ, which increases reactive 
oxygen species and activates the IκB kinase β (IKKβ)-c-
Jun N-terminal kinase (JNK) signaling pathway, which 
impairs liver insulin signaling [3]. FFA uptake and oxida-
tion rates are balanced in healthy skeletal muscle, thereby 
maintaining lipid intermediate equilibrium. However, 
elevated FFA uptake rates result in an accumulation of 
lipid intermediates, such as diacylglycerol, ceramide, and 
long-chain acyl-CoA, which hinder insulin signaling in 
the skeletal muscle of patients with T2D. The reduced 
inhibition of insulin in skeletal muscle lipolysis may 
increase saturated diacylglycerol accumulation, further 
exacerbating insulin resistance, and is partially mediated 
by protein kinase C [95].
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Dysregulation of adipokines
T2D adversely affects the secretion of adipokines. We 
conducted a literature search using the keywords (type 2 
diabetes) AND (adipokines) and reviewed clinical stud-
ies on PubMed. These studies indicated that levels of 
adiponectin, vaspin, and omentin-1 are reduced in T2D 
patients, whereas concentrations of leptin, chemerin, 
apelin, resistin, visfatin, fibroblast growth factor 21 
(FGF21), and lipocalin-2 are elevated (S. Table S2) [96–
105]. These adipokines are closely associated with insulin 
resistance and T2D (Table 1).

Adiponectin, an endogenous insulin sensitizer discov-
ered early on, functions via its receptors, AdipoR1 and 
AdipoR2. AdipoR1 influences AMP-activated protein 
kinase (AMPK) activation, while AdipoR2 is related to 
peroxisome proliferator-activated receptor-α (PPAR-α) 
activation [133]. Both PPAR-α and AMPK signaling path-
ways generally promote FFA oxidation, reduce ectopic 
triglyceride deposition, and inhibit insulin resistance 
development [107, 108]. Adiponectin modulated CREB-
regulated transcription coactivator 2, a key regulator of 
gluconeogenic enzymes phosphoenolpyruvate carboxyki-
nase (PEPCK) and glucose-6-phosphate catalytic sub-
unit through the AMPK signaling pathway, which reduce 
hepatic gluconeogenesis [109, 110]. Adiponectin receptor 
agonists induce AMPK and ACC phosphorylation in the 
skeletal muscle, thereby stimulating glucose uptake [111]. 
β-cell function is impaired in adiponectin knockout mice, 
but it is restored by adding adiponectin [106].

Leptin reduces blood glucose levels under normal con-
ditions. Leptin−/− mice demonstrate severe hyperglyce-
mia and glucose intolerance but leptin administration 
rapidly normalizes glucose metabolism [134]. Leptin 
resistance caused by the leptin insulin feedback mecha-
nism dysregulation, which is mainly related to leptin 
and insulin signaling disruption in the hypothalamus, 
may have elevated leptin levels in T2D. Generally, leptin 

downregulates forkhead box O1 (FoxO1) expression 
through the PI3K-AKT signaling pathway to inhibit neu-
ronal AgRP activity to reduce food intake and improve 
insulin sensitivity [135]. The PI3K-AKT insulin signal-
ing pathway is impaired in the T2D state, which reduces 
the inhibitory effect of leptin on FoxO1 and AgRP; thus, 
higher leptin levels are required to counter this leptin 
resistance [136, 137]. However, sustained elevated leptin 
levels increase the expression of suppressors of cyto-
kine signaling 3 protein, which further enhances the 
development of leptin resistance and insulin resistance 
by inhibiting the Janus kinase (JAK)-signal transducer 
of activation (STAT) and PI3K-AKT signaling pathways 
[112]. Therefore, elevated leptin levels in T2D may be a 
consequence of insulin resistance and may exacerbate 
insulin resistance.

Vaspin aids in improving β-cell function of pancreatic 
islets and enhances glucose-stimulated insulin secretion 
[114]. Vaspin activates the IRS-PI3K-AKT-GLUT signal-
ing pathway and inhibits the NF-κB pathway in rats on a 
high-fat diet, thereby improving insulin resistance in the 
liver, skeletal muscle, and adipose tissue [113].

Omentin-1, predominantly secreted by VAT and 
minimally expressed in SAT, improves insulin signaling 
through AKT activation in adipocytes [116]. Addition-
ally, omentin-1 stimulates adiponectin expression [115].

Varying studies reported the role of chemerin in insulin 
resistance. Chemerin overexpression in mouse skeletal 
muscle via the AKT-forkhead box O3 (FOXO3α) signal-
ing pathway exacerbates mitophagy-mediated insulin 
resistance [138]. Chemerin induces insulin resistance 
in human skeletal muscle cells through the IRS-1-AKT 
pathway and activates p38 mitogen-activated protein 
kinase, NF-κB, and extracellular signal-regulated kinase 
(ERK) 1/2, inducing insulin resistance [118]. Conversely, 
chemerin improves the insulin signaling pathway and 
glucose uptake in white adipocytes [117]. Recent studies 

Table 1 Interactions between adipokines and T2D
Changes in adipokine 
levels in T2D

Mechanisms affecting T2D Refer-
ences

Adiponectin↓ Inhibit insulin resistance; reduce hepatic gluconeogenesis; restore β-cell function  [106–111]
Leptin↑ Promote insulin resistance and leptin resistance  [112]
Vaspin↓ Improve β-cell function and enhance insulin secretion; inhibit liver, skeletal muscle and adipose tissue 

insulin resistance
 [113, 114]

Omentin-1↓ Improve insulin signaling in adipocytes; stimulate adiponectin expression  [115, 116]
Chemerin↑ Induce insulin resistance in skeletal muscle cells; improve insulin signaling pathway in adipocytes  [117, 118]
Apelin↑ Enhance insulin sensitivity; increase β-cell mass  [119–121]
Resistin↑ Enhance hepatic gluconeogenesis; induce liver, skeletal muscle, and adipocyte insulin resistance  [122–126]
Visfatin↑ Improve insulin signaling in liver and adipose tissue; increase β-cell mass and insulin secretion; promote 

inflammation and insulin resistance in hepatocytes
 [127–129]

FGF 21↑ Enhance insulin sensitivity; increase adiponectin levels; lower glycosylated hemoglobin levels; facilitate 
glucose uptake in human muscle cells

 [103, 130, 
131]

Lipocalin-2↑ Decrease adiponectin secretion; reduce GLUT1 and GLUT4 protein levels in adipocytes  [132]
Abbreviation: FGF21: fibroblast growth factor 21; GLUT1: glucose transporter 1; GLUT4: glucose transporter 4
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revealed that chemerin knockout mice experience ele-
vated fasting blood glucose levels and impaired glucose 
tolerance, thus indicating the need for further studies on 
chemerin’s role [139].

Apelin is a bioactive peptide and exists in several active 
forms [140]. Study in healthy overweight males demon-
strated that administration of 30 nmol/kg apelin-13 sig-
nificantly enhanced insulin sensitivity [120]. In T2D rats, 
apelin was shown to increase pancreatic β-cell mass and 
decrease insulin resistance [121]. Cui et al. reported that 
engineered small extracellular vesicles from Wharton’s 
jelly-derived mesenchymal stem cells loaded with apelin 
improved pancreatic β-cell proliferation and significantly 
enhanced AKT and AMPK pathway activities in WAT of 
T2D mice, thereby improving insulin sensitivity and glu-
cose tolerance [119]. These studies suggest a positive role 
of apelin in regulating glucose metabolism. Despite these 
findings, clinical data and meta-analyses report increased 
circulating apelin levels in T2D patients [101, 141], sug-
gesting potential apelin resistance, though the underlying 
mechanisms remain to be elucidated [142].

Srinivasan et al. [102] revealed significantly elevated 
resistin and visfatin levels in the saliva of patients with 
T2D. Notably, saliva is easily collected and contains 
approximately 50% of the serum proteome, thus it may 
gain clinical acceptance as a biological sample. Ani-
mal studies that use recombinant adenovirus carrying 
the resistant gene (ADV-resistin-EGFP) indicated that 
resistin inhibits liver AMPK activity, causing increased 
gluconeogenic enzyme expression, including PEPCK 
and glucose-6-phosphatase, and enhanced hepatic glu-
coneogenesis [125]. Resistin decreases glycogen syn-
thase kinase 3 beta (GSK-3β) levels by inhibiting AKT 
activation, thereby inducing hepatic insulin resistance 
[126]. Resistin impairs insulin-stimulated glucose uptake 
by affecting IRS-1 and AKT-1 functions and reducing 
GLUT4 translocation in the skeletal muscle [123, 124]. 
Cytokine signaling 3 suppressors, which can bind to insu-
lin receptors, are significantly upregulated by resistin in 
adipocytes, which increases insulin resistance [122].

Visfatin, also known as nicotinamide phosphoribo-
syl transferase or pro-B cell colony enhancing factor, is 
mainly expressed by VAT and is increased in patients 
with T2D [143]. A clinical study revealed that high visfa-
tin level was positively correlated with insulin resistance 
[144], and several clinical studies reported no correlation 
between insulin resistance and visfatin level [145, 146]. At 
present, the exact association between visfatin level and 
insulin resistance is unclear. The reason for the increase 
in visfatin in T2D needs further investigation, and the 
results of relevant studies on the role of visfatin are con-
tradictory. Visfatin overexpression improved the phos-
phorylation of IRS-1 in liver and adipose tissue in T2D 
rats [128]. Central administration of visfatin increases the 

β-cell mass and insulin secretion [129]. However, visfatin 
increases inflammation and insulin resistance through 
the JAK2/STAT3 and IKK/NF-κB signaling pathways in 
hepatocytes [127].

FGF21 is a member of the FGF superfamily, and the 
expression of FGF21 mRNA in human SAT is posi-
tively associated with circulating levels of FGF21 [147]. 
Pegbelfermin, a recombinant human FGF21 analogue, 
has shown potential in reducing fasting glucose levels, 
enhancing insulin sensitivity, and increasing adiponec-
tin levels in obese T2D patients [148]. AKR-001, an Fc-
FGF21 fusion protein, has demonstrated sustained effects 
on insulin sensitivity in T2D patients [130]. Treatment 
with an FGF21 analogue for 8 weeks in T2D mice sig-
nificantly lowered glycosylated hemoglobin levels [131], 
while FGF21−/−mice displayed impaired glucose toler-
ance [149]. In human muscle cells, FGF21 was found 
to increase GLUT1 surface levels, facilitating glucose 
uptake [103]. Although these results highlight the ben-
eficial impact of FGF21 on glucose metabolism, clinical 
investigations have noted high serum FGF21 levels in 
T2D patients, indicating possible FGF21 resistance or an 
adaptive response to elevated endogenous FGF21 [103, 
104].

Case-control and cross-sectional studies have found 
elevated serum levels of lipocalin-2 in patients with T2D 
[96, 105]. The case-control study, however, did not estab-
lish a correlation with glycemic control, potentially due to 
limited sample size [96]. Conversely, the cross-sectional 
study associated high lipocalin-2 levels with an increased 
risk of hyperglycemia [105]. Studies in lipocalin-2 knock-
out mice under conditions of aging or a high-fat diet 
showed significantly reduced fasting glucose and insulin 
levels and improved insulin sensitivity [150]. Kamble et 
al. found that recombinant human lipocalin-2 decreased 
adiponectin secretion and reduced GLUT1 and GLUT4 
protein levels in adipocytes from both male and female 
SAT, suggesting that elevated lipocalin-2 may exacerbate 
insulin resistance in T2D [132].

Effect of antidiabetic drugs on WAT in T2D
Antidiabetic drugs may influence WAT and dem-
onstrate beneficial effects, considering the interplay 
between WAT changes and insulin resistance in T2D. 
We reviewed the clinical studies on the effects of antidia-
betic drugs on WAT in T2D, including insulin therapy, 
sulfonylurea, metformin (S. Table S3), glucagon-like pep-
tide-1 receptor agonists (GLP-1RAs) (S. Table S4), TZDs 
(S. Table S5), and sodium-dependent glucose transport-
ers-2 (SGLT-2) inhibitors (S. Table S6), and added several 
animal studies and in vitro studies as supplements. The 
effects of these antidiabetic drugs on WAT in T2D are 
summarized in Table 2.
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Insulin therapy
Insulin therapy, a direct approach to controlling blood 
glucose, frequently causes weight gain, as it promotes 
fat synthesis. In a randomized, placebo-controlled trial, 
obese patients with T2D were randomly assigned to 
intensive insulin therapy alone or combined with piogli-
tazone for 12–16 weeks. The study revealed no significant 
change in VAT, with both treatment groups experiencing 
weight and SAT gains after treatment, particularly in the 
insulin plus pioglitazone group [152]. Another clinical 
study explored the effects of a twice-daily administered 
biphasic insulin mixture 70/30, which enhanced omen-
tin-1 expression over 6 months [153]. Moreover, insulin 
therapy was found to elevate body weight and total fat 
mass in T2D rats, with a greater accumulation in SAT 
compared to VAT, and raised serum adiponectin lev-
els [151]. These findings suggest that insulin treatment, 
despite the associated weight gain, may cause a healthier 
WAT distribution and positively affect adipokines.

Sulfonylureas
Sulfonylureas mainly stimulate pancreatic islets β-cells 
to secrete insulin to reduce blood glucose. Studies on 
their effects on WAT in T2D are very limited. A 13-week 
clinical study revealed that sulfonylurea treatment failed 
to reduce plasma FFA levels in patients with T2D, and 
the specific drugs used were not described [155]. A 

prospective study revealed that glimepiride at 0.5–1 mg/
day for 28 weeks did not reduce VAT area in patients 
with T2D [188]. In another clinical study, the initial dose 
of glibenclamide treatment was 1.75  mg and gradually 
increased until the fasting blood glucose reached ~ 7.0 
mmol/L or total daily dose reached 7 mg for 3 months, 
this treatment enhanced insulin-stimulated glucose 
transport and lipogenesis in WAT in moderately obese 
patients with T2D [154]. However, glimepiride and 
glibenclamide treatment promoted the hypertrophic 
phenotype of adipocytes and increased TNF-α mRNA 
expression in WAT, especially glibenclamide, in obese 
T2D rats [156]. Therefore, the effect of sulfonylureas on 
WAT should be carefully considered.

Metformin
Metformin is the most widely prescribed drug for T2D 
treatment, with a strong hypoglycemic effect and recog-
nized safety. It has positive effects on WAT under T2D 
conditions. In a randomized double-blind placebo-con-
trolled trial, administering metformin at a dosage of 1 g 
twice daily for 26 weeks reduced body weight and VAT 
mass in patients with T2D [158]. A prospective study 
assessed the impact of metformin, administered at 1  g 
twice daily for 4 months, noting a reduction in liver fat 
but not in overall body weight in newly diagnosed T2D 
patients [159]. Moreover, a transversal study in obese 

Table 2 Effect of antidiabetic drugs on WAT in T2D
Antidiabetic drugs Effects on WAT in T2D References
Insulin therapy Increase SAT; raise omentin-1and adiponectin levels  [151–153]
Sulfonylureas (glibenclamide) Reduce FFA levels; enhance glucose transport and lipogenesis in WAT  [154, 155]
Sulfonylureas (glimepiride/glibenclamide) Promote the hypertrophic phenotype of adipocytes; increase TNF-α mRNA expres-

sion in WAT
 [156]

Metformin Reduce VAT mass, liver fat and the levels of FFA, PAI-1 and leptin; lower serum pro-
inflammatory markers (TNF-α, IL-6, IL-1β, and MCP-1) and protein levels (MCP-1, 
NF-κB, and NLRP3) in VAT

 [157–161]

GLP-1RAs (exenatide) Reduce liver fat and epicardial fat  [162]
GLP-1RAs (liraglutide) Reduce VAT; increase omentin-1 levels  [163, 164]
GLP-1RAs (semaglutide) Reduce VAT, liver steatosis and fatty liver index  [165, 166]
GLP-1RAs (tirzepatide) Reduce liver fat content, VAT and abdominal SAT  [167]
TZDs (rosiglitazone/troglitazone) Reduce FFA esterification, lipolysis and leptin levels; increase adiponectin levels and 

small adipocyte numbers
 [34]

TZDs (rosiglitazone) Reduce the intra-abdominal adipose tissue to abdominal SAT ratio, liver fat, the levels 
of visfatin, resistin and FFA, the expression of inflammation-related genes macro-
phage inflammatory protein-1α and IL-6 in SAT; increase adiponectin levels

 [168–174]

TZDs (troglitazon) Reduce VAT and intra-abdominal adipose tissue; increase SAT  [175–178]
TZDs (pioglitazone) Reduce PAI-1 levels; increase SAT adiponectin levels  [179–181]
SGLT-2 inhibitors (canagliflozin) Reduce VAT  [182]
SGLT-2 inhibitors (Dapagliflozin) Reduce liver fat, adipose tissue volume, body fat mass, and abdominal VAT and SAT; 

increase adiponectin levels
 [183–185]

SGLT-2 inhibitors (empagliflozin) Reduce VAT and liver fat; decrease the expression of pro-inflammatory cytokines and 
diminishing macrophage infiltration in VAT

 [186, 187]

Abbreviation: SAT: subcutaneous adipose tissue; VAT: visceral adipose tissue; FFA: free fatty acid; PAI-1: plasminogen activator inhibitor-1; TNF-α: tumor necrosis 
factor-α; IL-1β: interleukin-1β; IL-6: interleukin-6; MCP-1: monocyte chemoattractant protein-1; NF-κB: nuclear factor-kappa B; NLRP3: NOD-like receptor thermal 
protein domain associated protein 3
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patients with T2D revealed that metformin treatment 
diminished the activation of the NOD-like receptor ther-
mal protein domain associated protein 3 inflammasome 
complex in VAT and associated pro-inflammatory fac-
tors TNF-α, IL-6, IL-1β and MCP-1, indicating metfor-
min’s inhibitory effect on WAT inflammation [160]. A 
single-center, double-masked, double-dummy, cross-over 
study reported that metformin administered at 1 g twice 
daily for 4 months reduced FFA levels in patients with 
T2D [161]. An in vitro study revealed that metformin 
inhibited catecholamine-stimulated lipolysis through 
decreased PKA activity by reducing cyclic AMP produc-
tion and lessening phosphorylation of perilipin and lipase 
activity. Perilipin coats the lipid droplet surface, serving 
as a barrier to protect triglycerides from hydrolysis by 
lipases. PKA phosphorylation disrupts perilipin’s barrier 
function, initiating lipolytic activity [189]. Additionally, 
a clinical study reported that metformin lowered PAI-1 
and leptin levels in patients with T2D without affecting 
adiponectin levels [157]. In T2D rats, metformin was 
found to increase AdipoR1 and AdipoR2 expression in 
WAT, which may enhance adiponectin’s role in improv-
ing insulin sensitivity [190].

GLP-1RAs
GLP-1RAs improve glucose-dependent insulin secretion 
triggered by food intake by stimulating GLP-1 secretion, 
inhibiting inappropriate glucagon secretion, slowing gas-
tric emptying, and significantly reducing body weight 
[191]. A systematic review and meta-analysis revealed 
that GLP-1 receptor agonist treatment in patients with 
T2D reduced both VAT and SAT, with VAT demonstrat-
ing a greater decrease. Especially, exenatide and lira-
glutide had a positive effect on fat distribution [192]. In 
a prospective randomized study, the administration of 
exenatide at 5 ug twice daily for 4 weeks, followed by 10 
ug for the next 22 weeks, led to significant reductions 
in liver and epicardial fat content among obese T2D 
patients [162]. A placebo-controlled trial revealed that 
liraglutide injections of 1.8 mg/day significantly reduced 
VAT in South Asian patients with T2D, with VAT reduc-
tion correlating with a decrease in HbA1c levels [164]. A 
cross-sectional study reported that on the background 
of metformin treatment, patients with T2D treated with 
1.2 mg of liraglutide daily for 16 weeks experienced a sig-
nificant increase in plasma omentin-1 [163].

Furthermore, a prospective study revealed that add-
ing semaglutide to metformin treatment, starting with a 
weekly subcutaneous injection of 0.25 mg for one month, 
then increasing to 0.5 mg, and further to 1 mg after six 
months, significantly reduced VAT and liver steatosis in 
patients with T2D after 52 weeks [166]. Another pro-
spective study revealed that oral administration of sema-
glutide at 3 mg/day, increased to 7 mg/day after 30 days, 

demonstrated similar effects, significantly reducing the 
fatty liver index and visceral fat after 26 weeks of treat-
ment [165]. Tirzepatide, a new GLP-1RA under develop-
ment, administered weekly at doses of 5  mg, 10  mg, or 
15  mg, significantly reduced liver fat content, VAT, and 
abdominal SAT in patients with T2D after 52 weeks of 
treatment [167].

TZDs
TZDs are usually used in combination with diet, metfor-
min, or sulfonylurea to improve glycemic control and are 
associated with significant weight gain. TZDs belong to 
PPARG agonists. PPARG is highly expressed in WAT and 
much lower in the liver and skeletal muscle [193]. This 
indicates that WAT is an important direct target tissue 
of TZDs. A cross-over, placebo-controlled study revealed 
that TZDs improved the inhibitory effect of insulin on 
lipolysis and FFA esterification, and increased the num-
ber of small and medium-sized adipocytes in SAT. More-
over, TZDs increased plasma adiponectin levels and 
decreased leptin levels. Although the therapeutic drugs 
used by the 8 subjects included in this study were slightly 
different, 5 used rosiglitazone of 8 mg/day and the other 
3 used troglitazone of 600  mg/day, this study indicated 
that TZDs have positive effects on WAT under T2D con-
ditions [34].

In Korean patients with T2D, administration of rosigli-
tazone at a dose of 4 mg/day, increased to 8 mg/day after 
6 months, reduced the intra-abdominal adipose tissue to 
abdominal SAT ratio after 12 months [169]. In a double-
blind randomized study, rosiglitazone treatment (8  mg/
day) for 16 weeks reduced liver fat and increased adipo-
nectin levels in patients with T2D [170]. Several other 
clinical studies revealed that rosiglitazone regulated 
the expression of adipokines in T2D patients, not only 
the increase of adiponectin levels but also the decrease 
of visfatin and resistin levels [171–173]. Kolak et al. 
revealed that rosiglitazone increased the expression of 
genes involved in triacylglycerol storage, such as stearyl-
CoA desaturase and CD36, and reduced the expression 
of inflammation-related genes macrophage inflammatory 
protein-1α and IL-6 in SAT of T2D patients [168]. Tan et 
al. emphasized the role of rosiglitazone in reducing post-
prandial FFA concentration in obese patients with T2D, 
mainly related to improving postprandial insulin sensi-
tivity-related antilipolytic ability [174]. Similarly, in T2D 
rats, rosiglitazone was found to induce the expression of 
PCK1 in WAT, thereby promoting triglyceride produc-
tion, and it inhibited lipolysis, leading to a reduction in 
FFA levels [194].

Troglitazone is contraindicated due to liver toxicity, but 
early clinical studies on its effect on WAT also deserve 
attention. A clinical study investigated the combination 
of a troglitazone treatment of 400  mg/day with diet or 
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sulfonylurea over 3 months in T2D patients, and revealed 
that both 2 groups reduced VAT, with a slight weight 
gain associated with increased SAT [176]. Another clini-
cal study reached the same conclusion in T2D patients 
treated with troglitazone 400  mg/day with diet for 6 
months [177]. Akazawa et al. reported that troglitazone 
400  mg/day for one year caused weight gain and an 
increase in SAT, but no change in VAT in patients with 
T2D inadequately controlled with diet, sulfonylurea, and 
other drugs [178]. In a Double-blind randomized study, 
troglitazone treatment of 600  mg/d for 12 weeks alone 
reduced intra-abdominal adipose tissue without affecting 
total body fat or body weight in obese patients with T2D 
[175]. These indicated the positive effect of troglitazone 
on WAT distribution in T2D.

A clinical study revealed that pioglitazone 30  mg/
day in addition to diet or sulfonylureas increased body 
weight, SAT, and adiponectin levels in patients with T2D 
[180]. Obese patients with T2D inadequately controlled 
with metformin and sulfonylureas demonstrated that 24 
weeks of pioglitazone combination treatment at 30  mg/
day increased SAT without affecting intra-abdominal 
adipose tissue [181]. In a randomized, double-blind, pla-
cebo-controlled, mechanistic study, metformin and sulfo-
nylureas combined with pioglitazone of 15 mg/day for 6 
months reduced PAI-1 levels and increased adiponectin 
levels in obese patients with T2D [179]. These evidences 
indicate that the beneficial effect of pioglitazone on WAT 
is related to increasing SAT and adiponectin levels and 
reducing PAI-1 levels.

SGLT-2 inhibitors
SGLT-2 inhibitors promote glucose excretion in the urine 
by blocking glucose reabsorption in the kidneys with a 
daily energy loss of ~ 300 kcal and may therefore contrib-
ute to weight loss [195]. Several clinical studies revealed 
the beneficial effects of SGLT-2 inhibitors on WAT. Com-
pared with metformin, canagliflozin of 100  mg/day for 
12 weeks significantly reduced VAT in patients with T2D 
[182]. In a randomized, double-blind, placebo-controlled, 
cross-over study, once-daily administration of 10  mg 
dapagliflozin for 12 weeks significantly reduced liver 
fat although the VAT/SAT ratio remained unchanged 
[184]. Combining dapagliflozin with other therapies may 
improve its beneficial impact on fat distribution. Dapa-
gliflozin of 10  mg/day plus saxagliptin of 5  mg/day in 
patients with T2D on metformin of ≥ 1500 mg/day dimin-
ished liver fat and total fat mass [185]. Moreover, another 
clinical study revealed that in T2D patients with poorly 
controlled metformin, a daily dose of 10  mg of daglip-
razin reduced body fat mass, abdominal VAT and SAT, 
while increasing adiponectin levels [183]. Empagliflozin 
administered at 10 mg/day for 12 weeks in patients with 
T2D markedly decreased VAT and liver fat content [187]. 

Additionally, empagliflozin has been observed to reduce 
the expression of pro-inflammatory cytokines, including 
MCP-1, TNF-α, IL-1β, IL-6, and IL-10 as well as dimin-
ishing macrophage infiltration in VAT of T2D rats, high-
lighting its anti-inflammatory properties [186].

Conclusion
WAT is a metabolic tissue with considerable plasticity 
and stands as one of the core tissues linked to insulin sen-
sitivity. Its dysfunction can exacerbate insulin resistance 
and the progression of T2D. We reviewed the changes 
of WAT in T2D in PubMed, including changes in dis-
tribution, metabolism, adipocyte hypertrophy, inflam-
mation, aging, adipokines, and FFA levels, all of which 
may exacerbate insulin resistance. Notably, pathological 
changes in WAT do not only result from T2D but are 
also a contributor. Furthermore, we evaluated the influ-
ence of antidiabetic medications on these WAT changes, 
primarily based on clinical study data. Treatments such 
as insulin therapy and TZDs often lead to increased body 
weight and fat mass, yet may have beneficial impacts 
on WAT distribution, adipokine changes, or FFA levels. 
Conversely, drugs like sulfonylureas have shown minimal 
effect on WAT characteristics, occasionally even exhibit-
ing detrimental outcomes. GLP-1RAs have been found to 
help reduce VAT mass. Metformin and SGLT-2 inhibitors 
appear to improve WAT distribution, enhance adipokine 
release, and curb WAT inflammation. Given WAT’s sig-
nificant endocrine functions, the current research on the 
metabolic impacts of these antidiabetic drugs remains 
inadequate. There is also a scarcity of detailed mecha-
nistic insights from animal or in vitro studies into how 
these drugs modify WAT, particularly concerning their 
effects on various inflammatory cells within WAT, adipo-
cyte senescence, and adipocyte metabolism. Investigating 
antidiabetic medications can enhance our understanding 
of WAT’s role in T2D. Therefore, further clinical and pre-
clinical research is warranted.
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