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Abstract
Background Stress hyperglycemia ratio (SHR) has been associated with increased mortality from various 
cerebrovascular events and a higher incidence of acute kidney injury (AKI) in certain patient populations. However, 
the relationship between SHR and the mortality risk in patients with AKI has not been fully elucidated. Our study 
sought to comprehensively investigate the association and potential mediating effects between SHR and 28-day and 
90-day mortality in patients with AKI.

Methods 3703 patients with AKI were included in this study. Feature importance variables were screened by a 
random forest algorithm, and the independent association of SHR with mortality risk was determined by Kaplan ‒ 
Meier survival analysis with Cox regression analysis. Restricted cubic spline (RCS) was conducted to assess the non-
linear relationship between SHR and mortality risk. Mediation analysis was deployed to investigate the indirect effect 
of SHR on respiratory failure (RF) -mediated mortality risk.

Results Among the patients with AKI included in this study, the 28-day mortality was 13.6% and the 90-day mortality 
was 18.7%. Fully adjusted Cox regression demonstrated that SHR was an independent risk factor for 28-day mortality 
(HR, 1.77 [95% CI 1.38–2.27], P < 0.001) and 90-day mortality (HR, 1.69 [95% CI 1.36–2.11], P < 0.001) in patients with AKI. 
RCS analysis revealed a linear relationship between SHR and outcome events. Additionally, the effect of SHR on 28-day 
and 90-day mortality risk were mediated by an increased RF risk in 6.62% and 6.54%, respectively.

Conclusion High SHR is an independent risk factor for 28-day and 90-day mortality in patients with AKI, and its effect 
is partly mediated by an increased risk of RF.
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Introduction
Acute kidney injury (AKI) represents a major global pub-
lic health challenge, affecting millions of patients world-
wide and characterized by a rapid deterioration of renal 
function over a short period of time [1]. Approximately 
10–15% of hospitalized patients experience AKI, with the 
incidence reaching 30–70% in critically ill populations [2, 
3]. The incidence of AKI is gradually increasing, influ-
enced by a multitude of factors, including population 
aging, increased use of nephrotoxic medications, and 
invasive surgical procedures. Globally, AKI is associated 
with poor outcomes, including cardiovascular disease, 
chronic kidney disease (CKD), and significantly elevated 
mortality risk. It is estimated that around 1.7  million 
deaths occur annually due to AKI worldwide [4]. There-
fore, the identification of AKI patients at high risk of 
mortality is paramount for improving their prognosis. In 
recent years, while novel biomarkers such as neutrophil 
gelatinase-associated lipocalin and kidney injury mole-
cule-1 have emerged, there remains a paucity of effective 
prognostic assessment tools for AKI patients. There is a 
pressing need to establish a convenient and reliable prog-
nostic parameter to identify and adequately manage AKI 
patients at heightened risk of mortality.

Stress hyperglycemia refers to a transient increase in 
blood glucose levels triggered by physiological or psy-
chological stress, commonly observed in critically ill ICU 
patients. Stress hyperglycemia is closely associated with 
inflammation, oxidative stress, and endothelial dysfunc-
tion, and is a significant risk factor for adverse outcomes 
[5, 6]. The stress hyperglycemia ratio (SHR), calculated 
from admission blood glucose and glycated hemoglobin 
A1c (HbA1c), is a representative indicator for evaluat-
ing stress hyperglycemia. By considering both current 
blood glucose and baseline glycemic status, SHR more 
effectively assesses a patient’s true blood glucose profile 
and is thus regarded as a marker of disease severity in 
critically ill patients. Extensive research has consistently 
demonstrated that SHR is closely linked to the mortality 
risk of major adverse cardiovascular and cerebrovascu-
lar events, such as acute myocardial infarction, coronary 
artery disease, and stroke [7–9]. Furthermore, SHR has 
been shown to be significantly associated with the risk 
of AKI in patients with acute heart failure (HF) and in 
non-diabetic critically ill patients [10, 11]. However, the 
relationship between SHR and the 28-day and 90-day 
mortality risks in AKI patients has not been fully eluci-
dated. Therefore, the present study aims to evaluate the 
association and potential mediating effects between SHR 
upon ICU admission and the 28-day and 90-day mortal-
ity in AKI patients.

Methods
Study population
This was a retrospective cohort study based on a large-
scale critical care database. The data source was the med-
ical information mart for intensive care IV (MIMIC-IV) 
database, a publicly available, free, and open-access data-
base that records health-related data for ICU inpatients 
at Beth Israel Deaconess Medical Center from 2008 to 
2019. The author, Yue Shi, obtained the necessary certi-
fication to use the MIMIC-IV database. Due to the de-
identified nature of patient information in the database, 
the study was exempt from the requirement of ethical 
approval and informed consent.

The study included adult ICU patients diagnosed with 
AKI according to ICD-9 or ICD-10 codes. For patients 
with multiple ICU admissions, only data from the first 
admission was extracted. Patients lacking blood glucose 
and HbA1c measurements within 24 h of ICU admission 
were excluded (Fig. 1).

Data acquisition and definition
The data was extracted using Structured Query Language 
(SQL) running on PostgreSQL (version 13.7.2) from the 
MIMIC-IV database. The following information was 
retrieved: (1) Demographic information: sex, age, body 
mass index (BMI); (2) Illness severity scores: Sequen-
tial Organ Failure Assessment (SOFA) score, Simplified 
Acute Physiology Score (SAPS II); (3) Comorbidities: 
CKD, HF, RF, hypertension, diabetes, chronic obstructive 
pulmonary disease (COPD), malignancy, and acute coro-
nary syndrome (ACS); RF was defined as arterial oxygen 
partial pressure (PaO2) < 60 mmHg or PaO2/fractions 
of inspired oxygen ≤ 300 mmHg, with or without car-
bon dioxide retention. (4) Interventions: renal replace-
ment therapy (RRT), diuretics, and vasoactive drugs; (5) 
Laboratory parameters: white blood cell (WBC) count, 
hemoglobin, red cell distribution width (RDW), platelet 
count, creatinine, blood urea nitrogen (BUN), albumin, 
aspartate aminotransferase (AST), alanine aminotrans-
ferase (ALT), total cholesterol (TC), triglycerides (TG), 
potassium, sodium, chloride, glucose, and HbA1c. These 
laboratory parameters were obtained from the initial 
records after ICU admission. Except for a portion of ALT, 
AST, TC, and TG, all the variables were complete. For the 
missing ALT, AST, TC, and TG values, multiple imputa-
tion using a random forest algorithm was performed.

Exposure variables and outcome endpoints
SHR is calculated as follows [12]: [Plasma glucose (mg/
dL) / (28.7 × HbA1c (%) − 46.7)]. The primary outcome 
endpoints were 28-day mortality and 90-day mortality.
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Feature selection
Prior to investigating the association between SHR and 
clinical outcomes in AKI patients, we employed machine 
learning algorithms to perform feature selection and con-
firm the importance of the variables in the prognostic 
model. We primarily utilized the random forest model 
for variable feature selection, and the SHapley Addi-
tive extension package was used to visualize the variable 
importance [13].

Statistical analysis
The continuous variables were expressed as medi-
ans (quartiles) due to their non-normal distribution, 
while categorical variables were presented as percent-
ages. Comparisons between groups for continuous vari-
ables were performed using the Kruskal-Wallis H or 

Mann-Whitney U test, while categorical variables were 
compared using the chi-square or Fisher’s exact test.

Cox regression models were employed to determine 
the association between SHR and 28-day and 90-day 
mortality in AKI patients, with adjustment for multiple 
confounding variables. Model 1 was unadjusted, and 
Model 2 was adjusted for sex, age, and BMI. Model 3 was 
comprehensively adjusted based on the feature impor-
tance selected by the random forest algorithm (Fig.  2), 
as well as clinical and previous literature experience, 
including variables such as sex, age, BMI, SOFA, SAPS II, 
CKD, hypertension, HF, RF, COPD, diabetes, malignancy, 
diuretics, vasoactive drugs, RRT, WBC, hemoglobin, 
RDW, platelet, creatinine, BUN, albumin, ALT, AST, TC, 
TG, potassium, sodium, chlorine, and glucose. Kaplan-
Meier survival analysis was used to evaluate the mortal-
ity among groups based on the tertiles of SHR, and the 

Fig. 1 Flow chart of patient selection
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Log-Rank test was employed to assess the between-group 
differences.

RCS was utilized to evaluate the potential non-linear 
relationship between SHR and 28-day and 90-day mortal-
ity. Furthermore, we performed subgroup analyses to fur-
ther investigate the effects of SHR on clinical outcomes 
in different subgroups (age, sex, BMI, diabetes, hyperten-
sion, CKD, HF, and RF). Finally, we conducted mediation 
analysis to assess the direct effect of SHR on mortality 
and the indirect effect mediated through RF.

Data analysis was performed using R software (Version 
4.2.0) and STATA software (Version 16.0). A two-sided 
P-value < 0.05 was considered statistically significant.

Results
Baseline characteristics
A total of 3703 patients with AKI were enrolled in this 
study, with an overall median age of 68.4 years, and 
2,163 (58.4%) were male. Patients were divided into three 
groups based on the tertiles of SHR in the cohort (T1: 
SHR ≤ 0.95, T2: SHR 0.95–1.25, T3: SHR > 1.25), and their 
baseline characteristics are presented in Table 1. Patients 
with higher SHR were generally younger, had higher BMI, 
SOFA, and SAPS II scores, and had a higher prevalence 

of CKD, HF, RF, DM, and ACS as well as a higher like-
lihood of receiving RRT, diuretics, and vasoactive drug 
treatment. In terms of laboratory indicators, WBC, cre-
atinine, BUN, TG, ALT, AST, potassium and blood glu-
cose levels were higher for those with higher SHR, while 
the opposite was true for albumin, sodium and chlorine.

The baseline characteristics of 28-day survivors and 
non-survivors are presented in Table  2. Compared to 
survivors, non-survivors tended to be older, more likely 
to be female, and had higher SOFA and SAPS II scores. 
Non-survivors had a higher proportion of concomitant 
RF and malignancy, and were more likely to receive vaso-
active drugs and RRT. Additionally, non-survivors exhib-
ited higher levels of WBC, RDW, creatinine, BUN, AST, 
potassium, sodium, chlorine, blood glucose, and SHR, 
while they had lower levels of hemoglobin, albumin, TC, 
TG, and HbA1c.

SHR is associated with all-cause mortality in patients with 
AKI
During follow-up, 505 patients (13.6%) died within 28 
days, and 692 patients (18.7%) died during the 90 days. 
The 28-day and 90-day mortality rates were 9.9% and 
15.1% for patients with low SHR, 13.0% and 17.6% for 

Fig. 2 Feature selection based on random forest algorithm for 28-day mortality (A) and 90-day mortality (B)
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those with medium SHR, and 18.1% and 23.3% for 
patients with high SHR, respectively (Fig.  3). Similarly, 
the Kaplan-Meier curves (Fig. 4) showed that the 28-day 
and 90-day mortality of AKI patients gradually increased 
with higher SHR (Log-rank P < 0.0001).

Multivariable Cox regression analysis (Table 3) showed 
that SHR was an independent risk factor for both 28-day 
mortality (HR, 1.77 [95% CI 1.38–2.27], P < 0.001) and 
90-day mortality (HR, 1.69 [95% CI 1.36–2.11], P < 0.001) 
in patients with AKI. After full adjustment, each one-
unit increase in SHR was associated with a 77% and 69% 
increased risk of 28-day and 90-day mortality, respec-
tively. Additionally, patients in the highest tertile of SHR 

had a significantly increased risk of adjusted 28-day mor-
tality (HR, 1.56 [95% CI 1.18–2.05], P = 0.002) and 90-day 
mortality (HR, 1.42 [95% CI 1.12–1.79], P = 0.003).

The RCS curve (Fig. 5) demonstrated a linear associa-
tion between SHR and the outcomes (P for non-linear-
ity > 0.05), indicating that the risk of 28-day and 90-day 
mortality increased linearly with increasing SHR.

Subgroup analysis
To further assess the impact of SHR on AKI mortality, 
stratified and interaction analyses were conducted based 
on subgroups of age, sex, BMI, CKD, diabetes, hyper-
tension, HF, RF, and ACS (Fig.  6). The results showed 

Table 1 Baseline characteristics of participants categorized by SHR
Variables Overall

n = 3703
T1 (≤ 0.95)
n = 1236

T2 (0.95–1.25)
n = 1233

T3 (> 1.25)
n = 1234

P-value

Age (years) 68.4 (56.8, 79.1) 69.6 (57.9, 79.9) 68.9 (56.8, 79.8) 67.1 (56.0, 77.5) 0.003
Male, n (%) 2163 (58.4) 715 (57.9) 733 (59.5) 715 (57.9) 0.664
BMI (kg/m2) 28.6 (24.5, 33.8) 28.7 (24.3, 33.5) 28.2 (24.5, 33.5) 29.1 (24.7, 34.3) 0.025
SOFA 4.0 (2.0, 6.0) 3.0 (1.0, 5.0) 3.0 (2.0, 5.0) 5.0 (2.0, 8.0) <0.001
SAPS II 33.0 (26.0, 42.0) 32.0 (25.0, 40.0) 33.0 (26.0, 40.0) 36.0 (28.0, 45.0) <0.001
Comorbidities, n (%)
 CKD 756 (20.4) 255 (20.6) 211 (17.1) 290 (23.5) <0.001
 HF 1179 (31.8) 365 (29.5) 364 (29.5) 450 (36.5) <0.001
 RF 1075 (29.0) 269 (21.8) 322 (26.1) 484 (39.2) <0.001
 Hypertension 1833 (49.5) 618 (50.0) 643 (52.2) 572 (46.4) 0.014
 Diabetes 898 (24.3) 298 (24.1) 247 (20.0) 353 (28.6) <0.001
 COPD 238 (6.4) 73 (5.9) 74 (6.0) 91 (7.4) 0.250
 Malignancy 562 (15.2) 174 (14.1) 216 (17.5) 172 (13.9) 0.019
 ACS 405 (10.9) 97 (7.9) 127 (10.3) 181 (14.7) <0.001
Interventions, n (%)
 RRT 258 (7.0) 63 (5.1) 70 (5.7) 125 (7.0) <0.001
 Diuretics 1195 (32.3) 371 (30.0) 364 (29.5) 460 (37.3) <0.001
 Vasoactive drugs 738 (19.9) 180 (14.6) 192 (15.6) 366 (29.7) <0.001
Laboratory tests
 WBC (K/uL) 10.7 (8.0, 14.3) 9.2 (7.1, 11.9) 10.8 (9.2, 13.7) 12.6 (9.2, 16.8) <0.001
 Hemoglobin (g/dL) 11.9 (10.2, 13.4) 11.8 (10.3, 13.4) 12.1 (10.5, 13.5) 11.6 (9.9, 13.4) <0.001
 RDW (%) 14.0 (13.2, 15.1) 14.0 (13.2, 15.1) 13.8 (13.1, 14.9) 14.1 (13.2, 15.3) <0.001
 Platelet (K/uL) 204.0 (159.0, 259.0) 208.0 (162.0, 259.0) 206.0 (163.0, 256.0) 200.5 (152.0, 262.0) 0.124
 Creatinine (mg/dL) 1.0 (0.8, 1.4) 1.0 (0.7, 1.4) 1.0 (0.8, 1.3) 1.1 (0.8, 1.6) <0.001
 Albumin (g/dL) 3.3 (2.9, 3.7) 3.4 (2.9, 3.8) 3.4 (2.9, 3.8) 3.3 (2.8, 3.7) <0.001
 BUN (mg/dL) 19.0 (14.0, 29.0) 18.0 (13.0, 28.0) 18.0 (13.0, 26.0) 21.0 (15.0, 34.0) <0.001
 TC (mg/dL) 156.0 (124.1, 193.0) 155.0 (125.0, 191.0) 158.0 (125.0, 195.0) 156.0 (121.6, 192.2) 0.118
 TG (mg/dL) 119.0 (87.0, 202.6) 119.0 (87.0, 191.6) 119.0 (85.0, 197.0) 127.0 (91.3, 219.5) 0.014
 ALT (U/L) 25.0 (17.0, 38.0) 25.0 (16.0, 31.0) 25.0 (18.0, 36.0) 25.0 (20.0, 53.0) <0.001
 AST (U/L) 33.0 (23.0, 53.0) 33.0 (21.0, 42.0) 33.0 (24.0, 47.0) 33.0 (27.0, 80.0) <0.001
 Sodium (mmol/L) 138.0 (137.0, 140.0) 138.0 (138.0, 141.0) 138.0 (137.0, 140.0) 138.0 (136.0, 140.0) <0.001
 Potassium (mmol/L) 4.1 (3.7, 4.5) 4.0 (3.7, 4.4) 4.0 (3.7, 4.4) 4.2 (3.7, 4.6) <0.001
 Chlorine (mmol/L) 103.0 (100.0, 107.0) 104.0 (101.0, 107.0) 103.0 (100.0, 106.0) 102.0 (98.0, 106.0) <0.001
 Glucose (mg/dL) 137.0 (109.0, 191.0) 104.0 (92.0, 126.0) 131.0 (116.0, 153.0) 204.0 (164.0, 277.0) <0.001
 HbA1c (%) 5.9 (5.5, 6.8) 6.0 (5.6, 7.2) 5.8 (5.4, 6.4) 6.0 (5.4, 6.9) <0.001
SHR: stress hyperglycemia ratio; BMI, body mass index; SOFA, sequential organ failure assessment; SAPS II, simplified acute physiology score II; CKD, chronic kidney 
disease; HF, heart failure; RF, respiratory failure; COPD, chronic obstructive pulmonary diseases; ACS, acute coronary syndrome; RRT, renal replacement therapy; 
WBC, white blood cell; RDW, red blood cell distribution width; BUN, blood urea nitrogen; TC, total cholesterol; TG, triglyceride; ALT, alanine aminotransferase; AST, 
aspartate aminotransferase; HbA1c: glycosylated hemoglobin A1c.
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that SHR was significantly associated with the 28-day 
mortality risk in various subgroups of patient with AKI, 
including those aged ≤ 65 years or > 65 years, females, 
BMI ≤ 30  kg/m2 or > 30  kg/m2, non-diabetic, non-ACS, 
non-CKD, and non-HF patients, as well as those with 
or without hypertension and RF. Similar findings were 
observed in the subgroup analyses using 90-day mor-
tality as the outcome. Notably, the association between 
SHR and AKI mortality was more pronounced in patients 
aged < 65 years, with BMI > 30 kg/m2, and without diabe-
tes (P for interaction < 0.05).

Mediation analysis of the effect of SHR on mortality in 
patients with AKI
We performed mediation analysis to explore the medi-
ating effect of RF. Figure 7 depicted the mediating effect 
of RF on the relationship between SHR and 28-day and 
90-day mortality. With regard to 28-day mortality, the 
mediation analysis revealed that RF mediated 6.62% of 
the detrimental effect of SHR. Likewise, for 90-day mor-
tality, RF accounted for 6.54% of the association between 
SHR and the outcome.

Table 2 Baseline characteristics of participants categorized by 28-day mortality
Variables Overall

(n = 3703)
Survivors
(n = 3198)

Non-survivors
(n = 505)

P-value

Age (years) 68.4 (56.8, 79.1) 67.5 (56.1, 77.8) 76.2 (64.0, 85.0) <0.001
Male, n (%) 2163 (58.4) 1913 (59.8) 250 (49.5) <0.001
BMI (kg/m2) 28.6 (24.5, 33.8) 28.9 (24.7, 34.1) 26.7 (23.2, 32.0) <0.001
SOFA 4.0 (2.0, 6.0) 3.0 (2.0, 6.0) 5.0 (3.0, 8.0) <0.001
SAPS II 33.0 (26.0, 42.0) 32.0 (25.0, 40.0) 42.0 (35.0, 51.0) <0.001
Comorbidities, n (%)
 CKD 756 (20.4) 642 (20.1) 114 (22.6) 0.195
 HF 1179 (31.8) 1010 (31.6) 169 (33.5) 0.399
 RF 1075 (29.0) 813 (25.4) 262 (51.9) <0.001
 Hypertension 1833 (49.5) 1585 (49.6) 248 (49.1) 0.850
 Diabetes 898 (24.3) 793 (24.8) 105 (20.8) 0.051
 COPD 238 (6.4) 201 (6.3) 37 (7.3) 0.375
 Malignancy 562 (15.2) 461 (14.4) 101 (20.0) <0.001
 ACS 405 (10.9) 347 (10.9) 58 (11.5) 0.671
Interventions, n (%)
 RRT 258 (7.0) 192 (6.0) 66 (13.1) <0.001
 Diuretics 1195 (32.3) 1018 (31.8) 177 (35.1) 0.151
 Vasoactive drugs 738 (19.9) 582 (18.2) 156 (30.9) <0.001
Laboratory tests
 WBC (K/uL) 10.7 (8.0, 14.3) 10.5 (7.9, 13.9) 12.3 (9.2, 16.8) <0.001
 Hemoglobin (g/dL) 11.9 (10.2, 13.4) 12.0 (10.3, 13.4) 11.4 (9.9, 13.0) <0.001
 RDW (%) 14.0 (13.2, 15.1) 13.9 (13.2, 15.0) 14.4 (13.4, 15.9) <0.001
 Platelet (K/uL) 204.0 (159.0, 259.0) 204.0 (161.0, 259.0) 203.0 (10.0, 262.0) 0.339
 Creatinine (mg/dL) 1.0 (0.8, 1.4) 1 (0.8, 1.4) 1.1 (0.8, 1.6) <0.001
 Albumin (g/dL) 3.3 (2.9, 3.7) 3.4 (2.9, 3.8) 3.2 (2.7, 3.6) <0.001
 BUN (mg/dL) 19.0 (14.0, 29.0) 19.0 (13.0, 28.0) 22.0 (15.0, 36.0) <0.001
 TC (mg/dL) 156.0 (124.1, 193.0) 157.2 (125.0, 194.0) 150.0 (118.0, 185.6) <0.001
 TG (mg/dL) 119.0 (87.0, 202.6) 121.0 (88.0, 205.0) 119.0 (81.0, 185.0) 0.010
 ALT (U/L) 25.0 (17.0, 38.0) 25.0 (18.0, 38.0) 25.0 (15.0, 44.0) 0.726
 AST (U/L) 33.0 (23.0, 53.0) 33.0 (23.0, 51.0) 33.0 (25.0, 76.0) <0.001
 Sodium (mmol/L) 138.0 (137.0, 140.0) 138.0 (137.0, 140.0) 138.0 (137.0, 141.0) 0.007
 Potassium (mmol/L) 4.1 (3.7, 4.5) 4.1 (3.7, 4.5) 4.1 (3.7, 4.6) 0.366
 Chlorine (mmol/L) 103.0 (100.0, 107.0) 103.0 (100.0, 106.0) 104.0 (100.0, 107.0) <0.001
 Glucose (mg/dL) 137.0 (109.0, 191.0) 136.0 (108.0, 188.0) 145.0 (118.0, 214.0) <0.001
 HbA1c (%) 5.9 (5.5, 6.8) 5.9 (5.5, 6.9) 5.8 (5.4, 6.5) <0.001
 SHR 1.1 (0.9, 1.4) 1.1 (0.9, 1.3) 1.2 (1.0, 1.6) <0.001
BMI, body mass index; SOFA, sequential organ failure assessment; SAPS II, simplified acute physiology score II; CKD, chronic kidney disease; HF, heart failure; RF, 
respiratory failure; COPD, chronic obstructive pulmonary diseases; ACS, acute coronary syndrome; RRT, renal replacement therapy; WBC, white blood cell; RDW, 
red blood cell distribution width; BUN, blood urea nitrogen; TC, total cholesterol; TG, triglyceride; ALT, alanine aminotransferase; AST, aspartate aminotransferase; 
HbA1c: glycosylated hemoglobin A1c; SHR: stress hyperglycemia ratio.
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Table 3 The associations of SHR with all-cause mortality in patients with AKI
Categories Model 1

HR (95% CI)
P-value Model 2

HR (95% CI)
P-value Model 3

HR (95% CI)
P-value

28-day mortality
SHR, Per 1-point increment 1.70 (1.49, 1.94) <0.001 1.78 (1.56, 2.02) <0.001 1.77 (1.38, 2.27) <0.001
SHR (category)
 T1 (≤ 0.95) Ref. Ref. Ref.
 T2 (0.95–1.25) 1.35 (1.06, 1.70) 0.013 1.37 (1.08, 1.73) 0.009 1.29 (1.02, 1.66) 0.036
 T3 (> 1.25) 1.94 (1.55, 2.41) <0.001 2.05 (1.65, 2.56) <0.001 1.56 (1.18, 2.05) 0.002
P for trend <0.001 <0.001 0.002
90-day mortality
SHR, Per 1-point increment 1.60 (1.39, 1.77) <0.001 1.66 (1.47, 1.87) <0.001 1.69 (1.36, 2.11) <0.001
SHR (category)
 T1 (≤ 0.95) Ref. Ref. Ref.
 T2 (0.95–1.25) 1.19 (0.98, 1.45) 0.077 1.22 (1.00, 1.48) 0.050 1.18 (0.96, 1.45) 0.106
 T3 (> 1.25) 1.64 (1.37, 1.98) <0.001 1.76 (1.46, 2.12) <0.001 1.42 (1.12, 1.79) 0.003
 P for trend <0.001 <0.001 0.003
Model 1 was unadjusted.

Model 2 was adjusted for sex, age, and BMI.

Model 3 was adjusted for sex, age, BMI, SOFA, SAPS II, CKD, hypertension, HF, RF, COPD, diabetes, malignancy, diuretics, vasoactive drugs, RRT, WBC, hemoglobin, 
RDW, platelet, creatinine, BUN, albumin, ALT, AST, TC, TG, potassium, sodium, chlorine, and glucose.

Fig. 4 Kaplan–Meier analysis for 28-day mortality (A) and 90-day mortality (B)

 

Fig. 3 Mortality based on SHR tripartite groups (A) 28-day mortality; (B) 90-day mortality
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Discussion
This study comprehensively investigated the association 
of SHR with 28-day and 90-day mortality in AKI popu-
lation employing multiple analytical approaches. To our 
knowledge, this is the first study to reveal that higher 
SHR levels are independent risk factors for 28-day and 
90-day mortality in patients with AKI. After adjusting for 
potential confounding factors based on random forest 
algorithm-derived feature importance and clinical/litera-
ture-based experience, this association remained robust. 
Specifically, the study demonstrated a significant linear 
relationship between SHR and 28-day and 90-day mor-
tality in patients with AKI. Notably, the SHR-mortality 
relationship was more pronounced in the non-diabetic 
subgroup. Furthermore, the mediation analysis revealed 
that the adverse impact of SHR on 28-day and 90-day 
mortality is achieved in part by increasing RF risk.

Critically ill patients often experience excessive activa-
tion of the sympathetic nervous system, leading to stress-
induced insulin resistance and the development of stress 

hyperglycemia. Recently, SHR has been highlighted as a 
marker of acute glycemic changes under stressful condi-
tions or critical illness [14]. Existing studies have found a 
close relationship between SHR and AKI. Xia et al. found 
that SHR is one of the risk factors for adverse outcomes 
in patients with AKI [15]. Similarly, Shan et al. reported 
a J-shaped nonlinear relationship between SHR and the 
risk of AKI in patients with coronary angiography [16], 
which is consistent with the findings of Li [17]. Fur-
thermore, another study has demonstrated a U-shaped 
relationship between SHR and AKI in patients with con-
gestive HF [10].

Our study is the first to reveal a significant and inde-
pendent positive linear relationship between SHR and 
28-day and 90-day mortality in patients with AKI. The 
underlying mechanisms for this association have not 
been fully elucidated, but several potential pathways have 
been proposed: Firstly, stress hyperglycemia is medi-
ated by the hypothalamic-pituitary-adrenal axis and the 
sympathetic adrenal system to re-establish homeostasis 

Fig. 5 RCS curve of SHR with mortality. SHR was linearly associated with 28-day mortality (A, B, C) and 365-day mortality (D, E, F). Model 1 was unadjusted. 
Model 2 was adjusted for sex, age, and BMI. Model 3 was adjusted for sex, age, BMI, SOFA, SAPS II, CKD, hypertension, HF, RF, COPD, diabetes, malignancy, 
diuretics, vasoactive drugs, RRT, WBC, hemoglobin, RDW, platelet, creatinine, BUN, albumin, ALT, AST, TC, TG, potassium, sodium, chlorine, and glucose
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during stress [18]. However, excessive hyperglycemia may 
lead to disorders in the neuroendocrine hormones, aggra-
vate the inflammation load and oxidative stress, endo-
plasmic reticulum stress, and mitochondrial dysfunction, 
which together result in a decline in renal hemodynam-
ics, ischemia and hypoxia of renal tissue, accelerating 
renal function impairment [19, 20]. Indirectly, hypergly-
cemia may also facilitate renal underperfusion by affect-
ing the cardiovascular system such as reduced cardiac 
output and venous congestion. Secondly, the rapid rise 
in blood glucose can induce a hypertonic state, resulting 
in osmotic diuresis, which further contributes to dehy-
dration and impaired renal perfusion [21]. Thirdly, the 
balance between mitochondrial ATP, nitric oxide (NO), 
and reactive oxygen species is crucial for maintaining 
renal homeostasis [22]. However, this balance may be 
disrupted by stress hyperglycemia, leading to increased 

reactive oxygen species, reduced NO synthesis, and 
endothelial cell injury [23]. Damaged endothelial cells 
increase vascular permeability and rarefaction, further 
exacerbating renal hypoxia and worsening kidney func-
tion. Fourthly, stress hyperglycemia stimulates the pro-
duction of advanced glycation end-products and trigger 
their interaction with receptors, leading to microvascu-
lar damage, extracellular matrix degeneration, and sub-
sequent glomerulosclerosis, affecting kidney structure 
and function [24]. Fifthly, stress hyperglycemia is often 
accompanied by insulin resistance, which causes the kid-
ney to lose sensitivity to the biological effects of insulin, 
thus affecting kidney metabolism and repair [25]. In sum-
mary, a series of pathological changes caused by stress 
hyperglycemia jointly promote the development of renal 
complications, ultimately leading to poor prognosis. Our 
research findings underscore the significance of assessing 

Fig. 7 The mediating effect of RF on the relation between SHR and 28-day mortality (A) and 90-day mortality (B)

 

Fig. 6 Forest plots for the 28-day mortality (A) and 90-day mortality (B)
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the SHR in patients with AKI, which is beneficial for 
optimizing the stratification of mortality risk and guid-
ing early clinical interventions. This highlights the neces-
sity of considering long-term chronic glucose levels in 
high-glucose patients upon admission to determine the 
optimal target for glucose reduction. Furthermore, for 
patients whose initial blood glucose levels do not reach 
the conventional therapeutic threshold of 11 mmol/L, the 
assessment of SHR serves as a valuable tool to discern 
genuine hyperglycemia, thereby determining the appro-
priate time to initiate glucose-lowering treatment.

Furthermore, we observed that the relationship 
between SHR and AKI mortality was more pronounced 
in non-diabetic patients. Compared to AKI patients with 
diabetes, higher SHR was more likely to lead to poorer 
outcomes in non-diabetic AKI patients, which is con-
sistent with the findings of Guvercin [26]. This may be 
related to the fact that patients with diabetes generally 
have higher baseline blood glucose levels and a greater 
tolerance for glucose fluctuations [27]. As a result, the 
threshold blood glucose level associated with poor prog-
nosis in this specific population may be elevated.

Notably, through mediation analysis, we found that 
SHR increased the risk of 28-day and 90-day mortal-
ity in part by increasing the risk of RF, suggesting that 
RF may partially explain the mechanism by which SHR 
leads to poor outcomes in patients with AKI. Studies 
have shown that SHR is closely related to the degree of 
systemic inflammation in pneumonia patients with dia-
betes, and is non-linearly related to their adverse clini-
cal outcomes [28]. In addition, elevated blood glucose 
levels may induce acute lung injury by promoting the 
formation of AGEs and directly impairing endothe-
lial function and microcirculatory perfusion, leading to 
multi-organ failure, including the lungs [29, 30]. Over the 
past two decades, extensive research has demonstrated 
the existence of a lung-kidney crosstalk in critically ill 
patients [31]. AKI combined with RF is associated with 
high mortality [32, 33]. One study even put the mortal-
ity rate as high as 80% [34]. RF significantly increases 
the mortality risk of AKI patients, with an odds ratio of 
2.62 [35]. In recent years, several studies have attempted 
to elucidate the communication networks between the 
kidney-lung and lung-kidney organs, involving immune 
responses, inflammatory mediators, acid-base balance, 
gas exchange, and neuroendocrine mechanisms [32, 36]. 
RF is often accompanied by hypoxemia and hypercap-
nia, with the former leading to decreased renal perfusion 
due to hypoxia, and the latter directly activating renal 
vasoconstriction, resulting in impaired renal hemody-
namics [37]. Additionally, RF may lead to a comprehen-
sive decompensation of acid-base homeostasis and the 
release of various inflammatory mediators, such as inter-
leukin-6, soluble tumor necrosis factor receptors I and 

II, and plasminogen activator inhibitor-1, contributing 
to AKI progression [38]. Severe RF requires mechanical 
ventilation to improve lung function; however, mechani-
cal ventilation may result in a 3-fold increased risk of AKI 
[39]. This is because mechanical ventilation may lead to 
barotrauma, biological trauma, the release of circulat-
ing inflammatory mediators, and hemodynamic distur-
bances, all of which adversely impact the prognosis of 
AKI [40, 41]. These potential mechanisms may explain 
the effect of SHR on the mortality risk of AKI patients in 
part mediated through RF risk.

The key strengths of this study include, first and fore-
most, the fact that our analysis was based on the large, 
publicly available MIMIC-IV database, with relatively 
comprehensive follow-up data. Furthermore, the diverse 
analytical approaches and the feature importance selec-
tion using the random forest algorithm, along with the 
comprehensive adjustment for confounding factors based 
on clinical experience and previous literature, have con-
tributed to the robustness of the study findings. Most 
importantly, our study is the first to uncover the poten-
tial role of RF in mediating the relationship between SHR 
and mortality risk in patients with AKI.

However, there are some limitations to this study. First 
of all, given the retrospective and single-center nature of 
this investigation, further multi-center, large-scale pro-
spective studies are needed to corroborate these find-
ings. Second, as with all observational studies, we cannot 
establish a definitive causal relationship between this 
factor and the outcome. Third, SHR may be affected by 
a multitude of factors, including enteral or parenteral 
nutrition, insulin administration, and others. Due to the 
relative limitations of the MIMIC-IV dataset, these con-
founding variables were not accounted for, potentially 
introducing biases into the study results. Finally, this 
study only included AKI patients in the United States, 
further investigation is warranted to determine the gen-
eralizability of these findings to AKI populations in other 
countries.

Conclusion
In conclusion, our study revealed a linear relation-
ship between SHR and 28-day and 90-day mortality in 
patients with AKI. Furthermore, the adverse impact of 
SHR on the mortality risk is partially achieved through 
an increased risk of RF. Evaluating SHR can help identify 
risk stratification for mortality and guide early interven-
tions, thereby improving outcomes in patients with AKI.
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