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Abstract 

The aim of this study was to deeply explore the pathogenesis of obesity type 2 diabetes mellitus (O-T2DM) and search 
for potential biomarkers through high-throughput RNA sequencing technology. The study included 15 patients 
with O-T2DM and 15 healthy controls, and peripheral blood samples were collected for transcriptome analysis. The 
results showed that compared with the control group, there were 442 circRNAs and 2756 mRNAs with significant 
differential expression in the O-T2DM group. Through weighted gene co-expression network analysis (WGCNA) 
and pathway enrichment analysis, it was found that the differentially expressed mRNAs were mainly enriched in sign‑
aling pathways such as T cell receptor, cell senescence, cytotoxicity mediated by NK cells, IL-17, lipids and atheroscle‑
rosis, and the oxidative phosphorylation pathway was activated, and apoptosis was inhibited. Based on the ceRNA 
theory, a regulatory network was constructed, and key circRNAs such as hsa_circ_0060614 were screened out, which 
may regulate the expression of the MT2A gene by adsorbing hsa-mir-4668-3p, and the expression levels of the three 
were significantly increased in O-T2DM patients. This study provides a new perspective for the research on the molec‑
ular mechanism of O-T2DM and an important theoretical basis for the development of personalized treatment 
and precision medicine for it.
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Background
Obesity is thought to be a contributing factor to type 2 
diabetes and is a common complication in people with 
type 2 diabetes, significantly associated with an increased 
risk of T2DM [1–3].Currently, the majority of people 
with T2DM are overweight or obese [4]. Studies have 
shown that overweight and obese adults are 2.5 times 
more likely to develop T2DM than normal-weight indi-
viduals [5]. The prevalence of obesity among individu-
als of childbearing age worldwide has been reported to 
be as high as 30% [6, 7]. Data from in vitro and in vivo 
studies indicate that circRNA is a participant in lipo-
genesis, white fat browning, obesity, obesity-induced 
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inflammation, islet beta cell function, and insulin resist-
ance [8–10].

Non-coding RNA, as a key molecule regulating gene 
expression, has attracted much attention in recent years 
[11–13]. CircRNA is a special class of non-coding RNA, 
which has a circular closed structure and has many func-
tions. It can directly encode proteins [14], derive pseudo-
genes [15] or combine with genomic DNA to participate 
in gene transcription regulation [16, 17]. CircRNA can 
act as competing endogenous RNA (ceRNA), specifically 
adsorbing miRNA, “isolating” miRNA from target gene 
mRNA, thus weakening miRNA’s negative regulation of 
mRNA [18]; it can also directly bind to protein to inhibit 
protein function [17, 19]. CircRNA also plays a role in 
the pathogenesis of T2DM and T2DM-related complica-
tions. Research has indicated that the hsa_circ_0004535/
hsa-miR-1827/CASP8 network plays a crucial role in 
maintaining cell structural integrity and lipid homeo-
stasis [20]. Circular RNA contributes to diabetic foot 
ulcers, where circHIPK3 promotes cell proliferation, 
migration, and angiogenesis by up-regulating Nrf2 and 
VEGFA through down-regulating miR-20b-5p [21]. Cir-
cRNA14637 may play a key role in mediating metabolic 
improvement and adipose mass reduction by regulating 
fasn and sorbs2 expression via mmu-miR-762 [22]. How-
ever, no systematic studies have been reported on cir-
cRNA expression patterns in obese diabetes.

The aim of this study was to screen differentially 
expressed circRNAs and mRNAs in peripheral blood 
of O-T2DM and healthy subjects by high-throughput 
sequencing technology, and to analyze their potential 
biological functions and possible regulatory mechanisms. 
At the same time, circRNA–miRNA–mRNA regulatory 
network was constructed according to ceRNA principle 
to clarify the upstream and downstream regulatory rela-
tionship of genes and further reveal the potential func-
tion and regulatory mechanism of this network. Through 
the development of this study, we expect to provide new 
perspectives and theoretical basis for molecular mecha-
nism research of obesity diabetes and explore new 
molecular markers and therapeutic targets for the diag-
nosis and treatment of this disease, thus promoting the 
development of personalized diagnosis and treatment of 
T2DM and precision medicine.

Materials and methods
Patient and public involvement
Obesity type 2 diabetes mellitus (O-T2DM) subject 
selection criteria: (a) all patients met the diagnostic 
criteria of the American Diabetes Association crite-
ria (2018); (b) fasting blood glucose ≥ 7.0  mmol/L, gly-
cosylated hemoglobin (HbA1C) ≥ 6.5%; (c) body mass 
index (BMI) ≥ 25  kg/m2; and (d) patients with complete 

background information. Exclusion criteria: (a) patients 
with severe liver, kidney, lung, or systemic disease; (B) 
patients with malignant tumors; (c) patients with neu-
rological disease; (d) patients with vascular disease, 
inflammation, and immune disorders. The patients with 
O-T2DM in this study were from Hepingli Hospital and 
National Medical Hall of Beijing University of Traditional 
Chinese Medicine from December 2018 to September 
2021, as well as the healthy physical examination popula-
tion was recruited from the physical examination center 
of Hepingli Hospital and Water Conservancy Hospital. 
The study was approved by the Ethics Committee of Bei-
jing University of Traditional Chinese Medicine (BUCM), 
with the ethical batch number of (2017BZHYLL0105). All 
procedures were performed in accordance with the Dec-
laration of Helsinki, and all participants received written 
informed consent. Confidentiality should be observed by 
both the investigator and the subject. The enrolled sub-
jects were divided into Control and O-T2DM groups 
(Total = 30, Normal = 15, O-T2DM = 15). There was no 
statistical difference between the Control and O-T2DM 
groups in terms of gender and age (P > 0.05). After enroll-
ment, fasting venous blood was collected from both 
groups for subsequent experiments.

Total RNA extraction, mRNA library construction 
and Illumina sequencing
Peripheral blood was collected from subjects and cen-
trifuged at 12,000×g for 15 min at 4 °C to extract serum, 
total RNA was isolated from collected serum samples 
using Trizol reagent (Invitrogen, Carlsbad,CA, USA), 
and RNA concentration and purity (OD260/280 and 
OD260/230) were measured using NanoPhotometer® 
spectrophotometer (IMPLEN, CA, USA); The RNA 
Nano 6000 Assay from Bioanalyzer 2100 Systems (Agi-
lent Technologies, CA, USA) was used to accurately test 
sample RNA integrity. After RNA purification from total 
RNA using NEBnext ultra-RNA library prep kit, mRNA 
was enriched by Oligo (dT) magnetic beads according 
to manufacturer’s instructions. The first strand of cDNA 
was synthesized in M-MuLV reverse transcriptase system 
using fragmented mRNA as template and random oligo-
nucleotide as primer. Then the RNA strand was degraded 
by RNase H, and the second strand of cDNA was syn-
thesized from dNTPs in DNA polymerase I system [23]. 
The purified double-stranded cDNA was subjected to 
terminal repair, A-tail addition and sequencing adapter 
ligation. AMPure XP beads were used to screen cDNA 
of about 370–420 bp. PCR amplification was performed, 
and PCR products were purified again by AMPure XP 
beads. Finally, the library was obtained. The quality of the 
library was determined by using an Agilent 2100 System 
(NanoDrop ND-1000) analyzer and accurately quantified 
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by quantitative real-time polymerase chain reaction 
(library effective concentrations greater than 2 nM). Prior 
to data analysis, ribosomal RNA (rRNA) was removed 
using the Epicentre Ribozero™ rRNA Removal Kit (Epi-
centre, USA). Linear RNA was removed using RNase R 
(Epicentre, USA). Subsequently, the fragments were ran-
domly fragmented to 250–300  bp. Through fragment 
length selection, finally, all RNAs except ribosomal RNA 
and small-fragment RNAs (such as microRNA, siRNA, 
etc.) were obtained, including lncRNA, mRNA, circRNA, 
etc. A strand-specific library was constructed [24], and 
then sequenced using Illumina NovaSeq 6000.

Data quality control
Sequencing fragments are converted into reads by 
CASAVA base recognition from image data measured 
by high-throughput sequencer. Raw data is filtered by 
removing reads with adapters, removing reads contain-
ing N (N indicates that the base information cannot be 
determined), and removing low-quality reads (reads with 
Qphred ≤ 20 accounting for more than 50% of the total 
read length). At the same time, Q20, Q30 and GC content 
calculations were performed for clean data.

Identification of differentially expressed mRNA 
and circRNA
The expression of mRNAs was identified by the HTSeq 
(0.9.1) statistics. The Read Count values on each gene 
were considered to be the original expression level, and 
then the Fragments Per Kilobase of transcript sequence 
per Millions base pairs sequenced (FPKM) method was 
used to standardize them.

Use the two most commonly-used circRNA identifica-
tion software, find_circ [19] and CIRI (v2.0.5) [25], and 
the methods in the corresponding references to identify 
circRNAs. Meanwhile, use Transcripts Per Kilobase Mil-
lion (TPM) for normalization of the expression level.

The DESeq2 (version 1.20.0) [26, 27] was used to ana-
lyze the differentially expressed mRNAs and circRNAs. 
RNAs with FC > 1.2 or < 0.833 and pvalue < 0.05 [28] were 
identified as differentially expressed.

Weighted gene co‑expression network analysis
We constructed a co-expression network using WGCNA 
from the R package [29]. This is a scale-free network con-
struction method that identifies gene clusters with highly 
correlated expression profiles. By transforming the cor-
relation matrix into an adjacency matrix, we estimate 
Pearson correlation coefficients among genes according 
to FPKM values of genes, and then evaluate weighted co-
expression relationships among all genes in the adjacency 
matrix. All genes were clustered by hierarchical cluster-
ing and dynamic tree cutting function detection module. 

To obtain high reliability of the results, the minimum 
number of genes was set to 30, the sensitivity was set to 
3.0, and the module merging threshold was set to 0.25 to 
generate gene modules. Gene significance (GS) and mod-
ule membership (MM) are calculated to correlate mod-
ules with phenotypic data. MM threshold was set to 0.8 
and GS threshold was set to 0.1 to extract the informa-
tion of corresponding module genes for further analysis 
[30].

Pathway enrichment analysis
Metascape (https://​metas​cape.​org/) database was used to 
perform pathway enrichment analysis to determine the 
underlying molecular mechanisms of selected genes. For 
analysis purposes, we use R to delineate important KEGG 
pathways according to p-values. Genset enrichment anal-
ysis (GSEA) is used to determine whether a defined set 
of genes shows significant consistent differences between 
two sample groups. GSEA was performed using GSEA 
software 2.2.1 (http://​www.​broad​insti​tute.​org/​gsea) [31] 
and the gene set for C2 was obtained from the molecular 
signature database v5.2 (http://​softw​are.​broad​insti​tute.​
org/​gsea/​msigdb).

Construction of circRNA–miRNA–mRNA regulatory 
network
Certain circRNAs can function as competing endoge-
nous RNAs (ceRNAs) for miRNAs. Candidate circRNAs 
for constructing circRNA–miRNA–mRNA networks 
were derived from the differentially expressed circRNAs 
selected above. RNA Interactomes Encyclopedia of RNA 
Interactomes (ENCORI, http://​starb​ase.​sysu.​cn/​index.​
php) was used to predict miRNA binding sites for can-
didate circRNAs, and these predicted miRNAs consti-
tute candidate miRNAs for circRNA–miRNA–mRNA 
networks. TargetScan [32], miRDB [33], and miRWalk 
[34] were then used to predict mRNA targets for can-
didate miRNAs. The predicted mRNA targets are inter-
sected with the differential mRNAs screened in the above 
experimental studies to obtain candidate mRNAs of the 
circRNA–miRNA–mRNA network. Cytoscape software 
(V3.10.0) was employed to visualize the network, con-
struct the circRNA–miRNA–mRNA network, and con-
duct data analysis through the application of Network 
Analyzer and CytoNCA.

Real‑time quantitative PCR, RT‑qPCR
RT-qPCR was used to verify core RNA expressions in 
the circRNA–miRNA–mRNA network. Total RNA was 
extracted from two sample groups and reverse tran-
scribed into cDNA as per the manufacturer’s instruc-
tions. Reverse transcription for circRNA and mRNA 
was done using kit No. G3337, while miRNA reverse 

https://metascape.org/
http://www.broadinstitute.org/gsea
http://software.broadinstitute.org/gsea/msigdb
http://software.broadinstitute.org/gsea/msigdb
http://starbase.sysu.cn/index.php
http://starbase.sysu.cn/index.php
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transcription employed the A-tail method with kit No. 
AG11716. CircRNA, mRNA, and miRNA cDNA were 
prepared following the kit instructions. Amplifica-
tion was performed on a fluorescence quantitative PCR 
instrument with the following settings: Stage 1: 95 °C for 
30  s; Stage 2 (40 cycles): 95  °C for 20  s, 60  °C for 30  s; 
Stage 3 (melting curve): 65 °C to 95 °C. Fluorescence sig-
nals were collected every 0.5 °C. CT values were obtained 
at the end of the cycle. β-actin served as the internal ref-
erence for circRNA and mRNA, while U6 was used for 
miRNA. Relative expression levels were calculated using 
the 2 −△△Ct method (primer sequences in Table 1).

Statistical methods
SPSS 20.0 (SPSS, Inc., Chicago, IL, USA) software, and 
the measurement data were expressed as x ± s. The meas-
urement data that met the normality were analyzed for 
significant differences using one-way analysis of variance, 
and the measurement data that did not meet the normal-
ity were analyzed for significant differences using the 
Kruskal Wallis nonparametric test. The Chi-square test 
was used for frequency distribution data. P < 0.05 was 
considered statistically significant.

Results
Clinical characteristics of subjects
Our study enrolled 15 patients with O-T2DM and 15 
healthy people. All patients with O-T2DM met the diag-
nostic criteria of fasting plasma glucose (FPG) ≥ 7.0 
mmol/L, glycosylated hemoglobin (HbA1C) ≥ 6.5%, and 
BMI ≥ 25 kg/m2. As shown in Table 2, FPG, HbA1c, TG 
levels and BMI index were significantly increased, and 
HDL-C level was significantly decreased in the O-T2DM 
group compared with the Control group (P < 0.01). There 
were significant differences in mean BMI between the 
two groups (P > 0.005).

Quality assessment and mapping results
To construct mRNA and circRNA expression profiles 
for O-T2DM and Control, transcriptome datasets were 
generated by RNA-seq. Sequencing outputs were then 
subjected to quality control and mapping analysis (Sup-
plementary Table  1). Q20 (representing the probability 
of correct base detection) > 93%, Q30 > 85%, the overall 
sequencing error rate is below 0.04%. These results may 
indicate that transcriptome sequencing data has appro-
priate mapping quality.

Differentially expressed mRNA and circRNA
Sequencing technology was used to detect differentially 
expressed mRNA and circRNA in peripheral blood 
between Control group and O-T2DM group. As shown 
in Fig. 1B, O-T2DM_VS_Control detected a total of 2756 
differentially expressed mRNAs. As shown in Fig. 1C, 442 
differentially expressed circRNAs were detected (FC > 1.2 
or FC < 0.833, P < 0.05). Figure  1D–H is weighted gene 
co-expression network analysis (WGCNA) of mRNA. 
Analysis of the relationship between modules and clinical 
characteristics found that white (cor =  ± 0.74, P < 0.001), 
lightsteelblue1 (cor =  ± 0.48, P < 0.001) and darkma-
genta (cor =  ± 0.44, P = 0.01) were significantly correlated 
with phenotypes. Then the absolute value of correlation 
threshold was set to > 0.8, and the Hub genes in two mod-
ules were extracted regardless of phenotype for enrich-
ment analysis.

Pathway enrichment analysis
The modules significantly correlated with phenotypes 
were screened from mRNA WGCNA results, and KEGG 
enrichment analysis was performed on Hub genes 
extracted from the modules. As shown in Fig.  2A, B, 

Table 1  Primer sequences

F forward, R reverse

Gene Primer sequences

β-actin F: GTG​GCC​GAG​GAC​TTT​GAT​TG

R: CCT​GTA​ACA​ACG​CAT​CTC​ATATT​

hsa_circ_0060614 F: TTC​AGT​GCG​AGC​GAG​GAG​TC

R: TGT​TGC​TCC​ATG​TCT​AAT​CAT​TTG​A

MT2A F: CAA​AGG​GGC​GTC​GGA​CAA​GTG​

R: CAA​ACG​GTC​ACG​GTC​AGG​GTTG​

U6 F: CTC​GCT​TCG​GCA​GCACA​

R: AAC​GCT​TCA​CGA​ATT​TGC​GT

hsa-mir-4668- 3p F: GGG​AAA​ATC​CTT​TTT​GTT​TTT​CCA​G

R: Kit (AG11716)

Table 2  Basic information and biochemical indicators of 
subjects (x ± s, n = 15)

FPG fasting plasma glucose, HbA1c glycosylated hemoglobin, BMI body mass 
index, TC total cholesterol, TG triglyceride, LDL-C low density lipoprotein, HDL-C 
high density lipoprotein

*: P < 0.05, **: P < 0.01, ***: P < 0.001 compared with Control group

Control O-T2DM

Gender (M/F) 8/7 7/8

Age (year) 54.60 ± 9.42 53.67 ± 7.23

FPG (mmol/L) 5.38 ± 0.65 11.97 ± 4.51***

HbA1c (%) 5.67 ± 0.21 8.54 ± 1.77***

BMI (kg/m2) 23.44 ± 2.67 27.07 ± 1.51***

TC (mmol/L) 5.21 ± 0.94 5.37 ± 1.08

TG (mmol/L) 1.28 ± 0.66 3.11 ± 2.61**

LDL-C (mmol/L) 2.91 ± 1.02 3.18 ± 0.77

HDL-C (mmol/L) 1.64 ± 0.47 1.12 ± 0.4**
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the enrichment results of darkmagenta and lightsteel-
blue1 modules are respectively shown. Enriched in T cell 
receptor, cellular senescence, natural killer cell mediated 
cytotoxicity, IL-17, lipids and atherosclerosis signaling 

pathways. GSEA analysis of differential mRNA showed 
that oxidative phosphorylation pathway was activated 
in O-T2DM group, whereas apoptosis was inhibited in 
O-T2DM group (Fig. 2C, D).

Fig. 1  Transcriptomic analysis of serum from subjects. A The schematic diagram depicts the recruitment of both normal individuals and O-T2DM 
patients. B, C Visual statistical results of differential gene analysis. Volcano plots of mRNA (B), circRNA (C) expression. Each dot in the graph 
represents a specific gene or transcript; the red dots represent significantly upregulated genes; the green dots represent significantly 
downregulated genes, and the gray dots represent genes without significantly different expression. D The relationship between the mean 
connectivity and various soft-thresholding powers. E The relationship between the scale-free fit index and various soft-thresholding powers. 
F Clustering dendrogram of 30 samples. G The cluster dendrogram was constructed using WGCNA based on topological overlap dissimilarity, 
with each distinct color denoting a particular gene co-expression module. H Heat map of the correlation between each color module 
and phenotype
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Construction of circRNA–miRNA–mRNA network
We used miRanda software to predict miRNA bind-
ing sites differentially expressed in circRNA between 
O-T2DM and Control groups. The results showed that 
264 of the 442 differential circRNAs predicted miRNA 
binding sites, involving a totally of 2643 different miR-
NAs as miRNA candidates.

TargetScan, miRDB and miRWalk databases were used 
to identify 6991 mRNA targets. Intersecting the pre-
dicted candidate mRNAs with the 2756 differentially 
expressed mRNA screened by sequencing yielded 1281 
candidate mRNAs (Fig. 3).

264 differential circRNAs, 2643 candidate miR-
NAs and 1281 candidate mRNAs were introduced into 

Fig. 2  Enrichment analysis results of gene modules. A KEGG pathways of the hub genes in the darkmagenta module are plotted according 
to the adjusted p-value (y-axis) and the non-statistical Z-score calculated by GoPlot (x-axis). The area of each circle represents the number of genes 
of that pathway. B KEGG pathways of the hub genes in the lightsteelblue1 module. C, D GSEA of oxidative phosphorylation (C) and apoptosis (D) 
pathways between control and O-T2DM groups. There is a scale panel below, with black vertical lines representing significant genes. The left side 
(red) represents genes that are upregulated in the O-T2DM group compared to the control group, while the right side (blue) represents genes 
that are downregulated
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cytoscape to construct circRNA-miRNA-mRNA regu-
latory network map of O-T2DM and Control groups, 
and circRNA, miRNA and mRNA that did not conform 
to ceRNA competition principle were deleted. The cir-
cRNA-miRNA-mRNA network includes 4209 nodes and 
135,344 edges, involving 264 circRNAs, 1789 miRNAs 
and 1281 mRNAs.

Only the top 5 circRNAs with differential expression 
multiples among 264 circRNAs were retained to con-
struct the ceRNA network regulated by them, as shown 
in Fig.  4A. The ceRNA network in which the top 5 cir-
cRNAs are involved consists of 78 nodes and 125 edges 
in total. The 22 kinds of mRNAs involved in the ceRNA 
network are mainly enriched in endocrine resistance, 
inflammatory mediator regulation of TRP channels, TNF, 
cellular senescence, rap1, MAPK, mineral absorption 
and insulin secretion (Fig. 4B). MT2A was the most dif-
ferentially expressed mRNA in the network (FC = 1.74, 
P = 0.0086). Sponge hsa_circ_0060614 combined with 
hsa-mir-4668- 3p promotes MT2A expression.

hsa_circ_0060614 functions via the ceRNA network axis 
of hsa‑mir‑4668‑3p/MT2A
We constructed a ceRNA network to identify the 
hsa_circ_0060614/hsa-mir-4668-3p/MT2A path-
way. Sequencing revealed significant increases in hsa_
circ_0060614 and MT2A expression. To confirm the 
targets, we analyzed RNA from O-T2DM and healthy 
controls using qRT-PCR for MT2A, hsa-mir-4668-3p, 
and hsa_circ_0060614. Results showed elevated levels of 
these markers in O-T2DM patients’ blood (Fig. 5A–C).

Fig. 3  Intersection of the differentially expressed mRNAs 
and database-predicted mRNAs

Fig. 4  Construction of ceRNA network map and KEGG enrichment analysis of mRNAs involved. A CircRNA–miRNA–mRNA regulatory network 
constructed based on the mechanism of action of ceRNAs. Note: Green squares: miRNA; yellow squares: mRNA; red circles: circRNA. B Chord plots 
show the relationship between mRNAs and the KEGG pathway
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Discussion
Obesity represents a significant risk factor for T2DM, 
with a close association between the two. The likeli-
hood of developing T2DM is notably elevated in obese 
individuals, and the majority of T2DM patients are 
accompanied by overweight or obesity issues. Previ-
ous investigations have demonstrated that circRNA is 
involved in various processes, including adipogenesis [35, 
36], obesity [37, 38], obesity-related inflammation [39, 
40], islet β-cell function [8], and insulin resistance [41]. 
Nevertheless, research focusing on exploring the patho-
genesis of obesity and diabetes from the perspective of 
circRNA remains insufficient.

This research conducted an analysis of the periph-
eral blood of O-T2DM patients and healthy individu-
als through high-throughput sequencing technology 
and established a circRNA–miRNA–mRNA regulatory 
network. The WGCNA revealed that the differentially 
expressed mRNAs were concentrated in signal pathways 
such as the T cell receptor, cell senescence, cytotoxicity 
mediated by NK cells, IL-17, lipid, and atherosclerosis. 
The GSEA demonstrated that the oxidative phosphoryla-
tion pathway was activated, and apoptosis was inhibited 
in the O-T2DM group. These results are in line with pre-
vious research findings. For instance, a review study by 
Theresa V Rohm et al. indicated that the obesity-related 
inflammatory signaling pathway is of great significance in 
the pathogenesis of diabetes [42], and the inflammatory-
related pathways involved in this study further corrobo-
rate this perspective.

This study identified key circRNAs like hsa_
circ_0060614, which might modulate the expression 
of the MT2A gene by adsorbing hsa-mir-4668-3p, and 
the expressions of all three were markedly elevated in 

O-T2DM patients. The MT2A gene is associated with 
the risk of diabetes, and its expression is augmented in 
the adipose tissue of obese type 2 diabetes patients. It is 
also intimately related to diverse biological processes, 
including inflammation, the MAPK signaling pathway, 
cell senescence, cytotoxicity, mineral absorption, and 
oxidative stress. This is in accordance with the signifi-
cance of MT2A in diabetes-related metabolic disorders 
as discovered in other studies. For instance, the elevation 
of pro-inflammatory chemokines in patients with ath-
erosclerosis is closely tied to the abnormal expression of 
MT2A. Under inflammatory stimulation, the up-regula-
tion of MT2A expression can bolster the antioxidant abil-
ity, yet it can also alter the metal homeostasis, exacerbate 
atherosclerosis, and trigger cytotoxicity and death. Inhib-
iting inflammation and maintaining MT homeostasis are 
beneficial for ameliorating T2DM [43–45].

Conclusion
For the first time, this article has conducted a systematic 
study on O-T2DM from the perspective of the ceRNA 
regulatory network mediated by circRNA, thereby pro-
viding a novel explanatory dimension for its patho-
genesis and highlighting the crucial role of circRNA 
in modulating mRNA expression and consequently 
influencing disease progression. Based on the ceRNA 
theory, a regulatory network was established, and mol-
ecules including hsa_circ_0060614, hsa-mir-4668-3p 
and MT2A were identified as potential biomarkers for 
O-T2DM. MT2A is intimately associated with inflam-
mation, MAPK, cell senescence, cytotoxicity, mineral 
absorption, oxidative stress, and the like. Moreover, its 
abnormal expression plays a pivotal role in the develop-
ment of the disease, furnishing a theoretical foundation 

Fig. 5  The relative expression level of DEGs involved in the ceRNA network detected by RT-qPCR. Data are presented as mean ± SD. *p < 0.05, 
*p < 0.01, ***p < 0.001, and ****p < 0.0001 compared between groups, based on independent samples t-test
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for the development of personalized treatment strategies 
and precision medicine for this ailment.

Limitations of this study

1.	 Although the circRNA–miRNA–mRNA regulatory 
network has been constructed, most of it is based on 
bioinformatics prediction and analysis. Future studies 
should conduct in vitro and in vivo functional verifi-
cation experiments, such as cell transfection experi-
ments, gene knockout/overexpression experiments, 
and animal model experiments, to deeply explore the 
specific biological functions and regulatory mecha-
nisms of key circRNAs, miRNAs, and mRNAs in 
the pathogenesis of O-T2DM, and further clarify the 
causal relationship.

2.	 The current study is deficient in validation using 
external data. Validating the identified genes using 
microarray or RNA-seq datasets from GEO can sig-
nificantly enhance the reliability of the findings [46, 
47].

Suggestion
In light of the potential targets unearthed in this study, it 
is possible to conduct relevant investigations in the realm 
of drug research and development. By screening small 
molecule compounds, biological agents, and the like that 
are capable of modulating the expression of crucial cir-
cRNAs, miRNAs, or mRNAs, new drug candidates and 
treatment strategies for the treatment of O-T2DM can be 
furnished.
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