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Abstract
Objective To explore the association between the Oxidative Balance Score (OBS), which represents the balance of 
multiple oxidative stress-related dietary and lifestyle exposures, and the risk of metabolic syndrome (MetS).

Methods A population-based cross-sectional study design was adopted and 16,850 participants in NHANES 
database were included in the statistics analysis stage. The OBS was constructed by combining information from 20 a 
priori selected pro- and antioxidant factors. Weighted logistic regression and restricted cubic splines (RCS) were used 
to estimate the association between OBS and MetS.

Results Participants in the highest OBS quartile, indicating low oxidative stress (OS) levels, exhibited a significantly 
lower risk of MetS (odds Ratio [OR] = 0.55, 95% confidence Interval [CI]: 0.47–0.64) compared to the lowest quartile. 
Specifically, higher OBS was inversely associated with abdominal obesity (OR = 0.61, 95% CI: 0.54–0.69), hypertension 
(OR = 0.69, 95% CI: 0.58–0.83), elevated triglycerides (OR = 0.68, 95% CI: 0.57–0.82), low high-density lipoprotein 
cholesterol (HDL-C) levels (OR = 0.60, 95% CI: 0.50–0.70) and fasting blood glucose (FBG) levels (OR = 0.74, 95% CI: 
0.62–0.88). The observed inverse association between OBS and hypertension or FBG levels appeared to primarily 
influenced by BMI. The association between dietary OBS intervals and elevated FBG levels was not statistically 
significant in men, whereas the risk was lower by 25% in women.

Conclusions A higher OBS, representing a balance of multiple oxidative stress-related dietary and lifestyle exposures, 
is associated with a lower risk of MetS. Therefore, adhering to an antioxidant diet and lifestyle may help prevent the 
occurrence of metabolic disorders.
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Introduction
Metabolic syndrome (MetS) is a state of metabolic abnor-
malities or metabolic disorders, characterized by a collec-
tion of risk factors affecting the onset of cardiovascular 
disease and type II diabetes, specifically manifested as 
hypertension, hyperglycemia, dyslipidemia and abdomi-
nal obesity [1, 2]. The prevalence of MetS varies among 
different ethnic groups, and MetS can affect approxi-
mately 10–50% of adults worldwide [3]. According to 
recent data published by the Centers for Disease Control 
and Prevention (CDC), in the United States, approxi-
mately 36.6% of adults suffer from MetS [4], and the 
condition is also prevalent among younger populations 
[5]. Since MetS and its components can affect a variety 
of diseases and overall mortality [6, 7], it has become a 
critical hidden threat to human health and a huge burden 
affecting the national economy.

MetS emerges as a complex interplay of multiple fac-
tors, encompassing detrimental dietary patterns and poor 
lifestyles as contributing elements [4]. Studies have sup-
ported that oxidative stress (OS) may play a crucial role 
in the occurrence and development of MetS [8, 9]. OS 
refers to the disruption of the delicate balance between 
prooxidants and antioxidants, resulting in an upregula-
tion of reactive nitrogen oxides (RONS) and subsequent 
damage to macromolecules such as lipids, proteins, and 
DNA. This ultimately leads to cellular injury and pertur-
bation of redox signaling pathways [10]. Alcohol, in its 
effects, serves as an OS inducer by inhibiting antioxidant 
enzymes and inciting inflammatory responses [11]. In 
addition to a pro-oxidative lifestyle, diet-related nutrients 
also affect the level of OS in the body. There is growing 
evidence that high intakes of nutrients such as vitamin C 
[12], vitamin D [13], and calcium [14] can protect against 
OS. In vitro experiments have shown that certain anti-
oxidant nutrients, such as vitamin E and selenium, can 
reverse OS-induced inflammatory responses [15]. These 
studies highlight the role of free radical-mediated OS in 
contributing to manifestations of MetS, such as abdomi-
nal obesity, hyperlipidemia, and hypertension [16]. Nota-
bly, in vitro evidence suggests that antioxidants have the 
potential to decelerate these processes. However, when it 
comes to human studies, particularly clinical trials, the 
results have been less promising. Antioxidants as preven-
tive agents have often yielded ineffective or even adverse 
outcomes [17, 18]. Bahadoran et al. noted that com-
binations of multiple antioxidant nutrients were more 
strongly associated with metabolic abnormalities than 
any single antioxidant component [19]. Because pro- 
and anti-oxidant factors may be interrelated and interact 
with each other, assessing the independent association 
of a single factor on individual exposure cannot provide 
a comprehensive picture of its role in the overall oxida-
tive balance reaction. To address this issue, an oxidative 

balance score (OBS) was developed by Van Hoydonck et 
al. in Belgium (2002) and used as a measure of the com-
bined assessment of pro- and anti-oxidant exposure, with 
higher OBS indicating lower oxidative stress response 
[20–23]. However, the epidemiological research on the 
association between OBS and the presence of MetS and 
its components is both limited and yields contradictory 
results [24, 25].

Considering the role of OS in the occurrence and 
development of MetS, the purpose of this study was to 
construct OBS by combining dietary components and 
lifestyle in a large sample nationally representative cohort 
of the United States, and to explore its influence on the 
risk of MetS and its components.

Materials and methods
Study population
The National Health and Nutrition Examination Survey 
(NHANES) stands as a pivotal, nationally representative 
cross-sectional survey of the civilian, non-institutional-
ized U.S. population, conducted by the National Center 
for Health Statistics (NCHS) of the Centers for Disease 
Control and Prevention (CDC) [26]. The survey employs 
a sophisticated, multi-stage and probability sampling 
design, systematically enrolling an annually refreshed 
cohort of approximately 5,000 individuals since 1999. 
Integral data collection takes place through comprehen-
sive health interviews and meticulous physical examina-
tions, culminating in a biennial dissemination of findings. 
The study protocol of NHANES has been approved by 
the Research Ethics Review Committee of the NCHS, 
and each participant has provided written informed con-
sent before participating in the study [27].

This study initially included 32,464 subjects over the 
age of 20 who participated in NHANES from 1999 to 
2010, and individuals were excluded if (1) they were 
pregnant (n = 1299), (2)they lost data for any of the MetS 
components (n = 3291), (3) they lost data for any of the 
OBS components (n = 9469), (4) they lost data for any of 
the covariates (n = 1552), (5) they lost data for any of the 
C-reactive protein (CRP) (n = 3). Finally, a total of 16,850 
participants were included in the analysis.

Determination of MetS and its components
According to the National Cholesterol Education Adult 
Treatment Group-III standard [28], MetS diagnosis 
requires the presence of two or more of the following 
disorders:

(1) Hyperglycemia, indicated by a fasting blood glucose 
(FBG) level ≥ 100 mg/dL (5.6 mmol/L) or the use of 
antidiabetic medications;

(2) Reduced high-density lipoprotein cholesterol (HDL-
C) levels, with < 40 mg/dL (1.04 mmol/L) for men 
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and < 50 mg/dL (1.29 mmol/L) for women, or the 
administration of lipid-lowering medications;

(3) Hypertriglyceridemia, identified by a triglyceride 
(TG) level ≥ 150 mg/dL (1.69 mmol/L);

(4) Abdominal obesity, defined as a waist circumference 
(WC) of ≥ 102 cm for men and ≥ 88 cm for women;

(5) Hypertension, denoted by systolic/diastolic 
blood pressure ≥ 130/85mmHg or the use of 
antihypertensive medications.

Variable collection and measurement
Both dietary and lifestyle components were used in the 
calculation of OBS. Dietary energy intake data were 
acquired through 24-hour dietary recall interviews (24 h) 
conducted. The assessment of dietary nutrient intake was 
conducted utilizing the University of Texas Food Intake 
Analysis System, in conjunction with the U.S. Depart-
ment of Agriculture Survey Nutrient Database. Drink-
ing habits were ascertained from the 24  h interviews. 
Smoking status as reflected by serum cotinine levels. 
Body mass index (BMI) was derived by dividing an indi-
vidual’s weight in kilograms by the square of their height 
in meters (kg/m²). Additionally, participants’ weekly 
metabolic equivalent (MET) values were calculated based 
on specific leisure activities undertaken in the preced-
ing 30 days, with pertinent details sourced from family 
interviews.

In this study, covariates were certain factors hypoth-
esized to be associated with MetS or OBS, including 
age, gender, race, educational attainment, marital status, 
and poverty-to-income ratio (PIR). To estimate dietary 
energy intake, we computed the mean of data gathered 
from interviews conducted on both day 1 and day 2. For 
quantification of C-reactive protein (CRP) concentra-
tions, we employed latex-enhanced nephelometry using 
the Dade Behring Nephelometer II analyzer system 
(Dade Behring Diagnostics Inc., Somerville, NJ).

OBS components and assessment methods
The calculation of the OBS entailed an evaluation of 16 
nutrients and 4 lifestyle factors, encompassing a total of 5 
pro-oxidants and 15 antioxidants. These selections were 
guided by a priori insights into the interplay between oxi-
dative stress (OS) and these specific nutrients or lifestyle 
attributes [21, 29].

These components were divided into four distinct 
categories:

(1) Dietary antioxidants: This category encompassed 
dietary fiber, carotene, riboflavin, niacin, vitamin B6, 
total folic acid, vitamin B12, vitamin C, vitamin E, 
calcium, magnesium, zinc, copper, and selenium. For 
dietary antioxidants, we categorized the participants 

into three groups based on their tertiles. The lowest 
tertile group awarded 0 points, the middle tertile 
group awarded 1 points, and the highest tertile group 
awarded 2 points.

(2) Dietary prooxidants comprising iron and total fat, 
this group provided insights into dietary prooxidant 
effects. Notably, for dietary prooxidants, we 
employed a scoring distribution that was inverse 
to that of the other categories—awarding 0 points 
to the highest tertile, 1 points to the middle tertile 
group and 2 points to the lowest tertile.

(3) Non-dietary antioxidants: Within this grouping, the 
factor examined was physical activity, representing 
non-dietary antioxidant contribution. For the 
quantification of physical activity (PA), which was 
calculated by the formula: PA = MET × weekly 
frequency × duration, the lowest tertile group 
awarded 0 points, the middle tertile group awarded 
1 points, and the highest tertile group awarded 
2 points. The higher the PA score, the higher the 
antioxidant activity.

(4) Non-dietary prooxidants: This classification 
incorporated cotinine, alcohol consumption, 
and BMI as indicators of non-dietary prooxidant 
influences. The scoring distribution for non-dietary 
prooxidants was 0 points for the highest tertile and 2 
points for the lowest tertile. Specifically, we assigned 
scores for alcohol consumption: 0 points for females 
consuming ≥ 15 g/d, males consuming ≥ 30 g/d, 
1 point for females consuming 0–15 g/d, males 
consuming 0–30 g/d, and 2 points for non-
drinkers. The dietary OBS was derived through the 
summation of scores attributed to the sixteen dietary 
factors. In contrast, the lifestyle OBS was calculated 
by aggregating the scores associated with the four 
distinct lifestyle components, as detailed in Table 1.

Statistical methods
Considering complex sampling survey designs according 
to the NHANES analysis guidelines and incorporating 
appropriate sample weights to account for the differential 
probability of selection, allowed extrapolation of research 
results to the U.S. adult population. Continuous variables 
were presented as weighted means and standard errors or 
medians with interquartile ranges, and categorical vari-
ables were presented as numerical values and weighted 
percentages. The differences between continuous and 
categorical variables in each OBS group were evaluated 
using weighted Wald-F and Rau-Scott chi-square tests.

Weighted logistic regression was used to estimate the 
association between OBS and MetS as represented by 
odd ratio (OR) and 95% confidence interval (CI). OBS 
was used as a continuous variable to judge whether there 
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was a nonlinear relationship with MetS and OBS was 
used as a categorical variable to calculate the P value 
of the trend test. We constructed three models in this 
study. Model 1 was a rough model without adjusting any 
confounding factors, model 2 adjusted age, race, mari-
tal status, education level and PIR, and model 3 further 
adjusted the energy intake and CRP on the basis of model 
2. OBS were classified into dietary OBS and lifestyle OBS 
to discuss their relationship with MetS traits overall and 
stratified by sex, separately. In addition, we conducted 
weighted multivariate linear regression models to evalu-
ate the association between OBS and cardiometabolic 
markers. Furthermore, restricted cubic spline (RCS) 
regression was used to verify the relationship between 
MetS traits and OBS overall and stratified by sex by set-
ting 4 knots and using logistic regression models.

Sensitivity analysis
Two sensitivity analyzes were performed in this study. 
Firstly, due to the slightly variable diagnostic criteria for 
MetS, WC, HDL-C, TG and FBG levels could be analyzed 
as continuous variables of MetS components to further 
analyze role of OBS. Secondly, a stepwise approach was 
taken to evaluate the influence of each individual com-
ponent in the construction of OBS. By iteratively remov-
ing one component at a time, we gauged whether the 
resultant scores, composed of the remaining 19 factors, 
exerted any discernible effects on the outcomes.

All statistical analysis were performed using R version 
4.2.1. The significance tests were two-tailed, and two-
tailed P < 0.05 was considered statistically significant.

Results
The distribution of the baseline characteristics and 
biochemical measures of the study subjects across the OBS 
quartiles range
The distribution of baseline characteristics and biochem-
ical measures among the OBS quartiles are presented in 
Table 2. The mean age was 45.19 ± 0.26 years, comprising 
7862 (46.66%) females and 8988 (53.34%) males. Predom-
inantly, subjects were non-Hispanic white (54.59%). All 
participants were categorized into four groups according 
to OBS quartiles: Q1 (OBS, 3 to 15), Q2 (OBS, 16 to 21), 
Q3 (22 to 26), and Q4 (27 to 37). Compared to the lowest 
OBS quartile, individuals in the highest quartile tended 
to have higher income levels, be more married, highly 
educated, elevated total energy intake and lower con-
centrations of CRP. Notably, gender distribution did not 
exhibit significant variance across OBS quartiles, thereby 
indicating a balanced representation of both males and 
females within each quartile. Moreover, differences in age 
distribution across OBS groups did not achieve statisti-
cal significance. As for MetS traits, with the exception of 
diastolic blood pressure (DBP), the distribution of other 
cardiometabolic characteristics (WC, FBG, TG, HDL-C 
and SBP) was statistically different across OBS quartiles.

Table 1 Score allocation scheme for each component of OBS
OBS components Male Female

0 1 2 0 1 2
Dietary fiber (g/d) [A] <=12.30 12.31–20.20 > 20.20 <=10.10 10.11–16.50 > 16.50
Carotene (RE/d) [A] <=41.25 41.26-146.46 > 146.46 <=37.94 37.95-159.68 > 159.68
Riboflavin (mg/d) [A] <=1.76 1.77–2.70 > 2.70 <=1.34 1.35–2.07 > 2.07
Niacin (mg/d) [A] <=20.83 20.84–31.73 > 31.73 <=14.61 14.62–22.48 > 22.48
Vitamin B6 (mg/d) [A] <=1.59 1.60–2.50 > 2.50 <=1.14 1.15–1.80 > 1.80
Total Folate (mcg/d) [A] <=317.00 317.01–501.00 > 501.00 <=244.15 244.16–384.00 > 384.00
Vitamin B12 (mcg/d) [A] <=3.35 3.36–6.39 > 6.39 <=2.29 2.30–4.49 > 4.49
Vitamin C (mg/d) [A] <=36.00 36.01–107.40 > 107.40 <=32.60 32.61–93.53 > 93.53
Vitamin E (ATE) (mg/d) [A] <=5.50 5.51–10.08 > 10.08 <=4.46 4.47–8.08 > 8.08
Calcium (mg/d) [A] <=648.00 648.01–1103.00 > 1103.00 <=537.00 537.01–906.00 > 906.00
Magnesium (mg/d) [A] <=249.00 249.01–364.00 > 364.00 <=192.00 192.01–282.00 > 282.00
Zinc (mg/d) [A] <=9.42 9.43–15.17 > 15.17 <=6.89 6.90-10.79 > 10.79
Copper (mg/d) [A] <=1.06 1.07–1.59 > 1.59 <=0.83 0.84–1.25 > 1.25
Selenium (mcg/d) [A] <=93.70 93.71–143.70 > 143.70 <=67.80 67.81–102.20 > 102.20
Total Fat (mg/d) [P] > 106.45 66.50-106.45 <=66.49 > 77.3 48.88–77.3 <=48.87
Iron (mg/d) [P] > 19.36 12.54–19.36 <=12.53 > 14.44 9.48–14.44 <=9.47
Physical activity [A] <=378.00 378.01–1890.00 > 1890.00 <=320.00 320.01–1200.00 > 1200.00
Alcohol (g/d) [A] > 30.00 0.00–30.00 None > 15.00 0.00–15.00 None
BMI (kg/m2) [A] > 29.66 25.64–29.66 <=25.63 > 30.47 24.76–30.47 <=24.75
Cotinine (ng/mL) [A] > 2.52 0.05–2.52 <=0.04 > 0.16 0.02–0.16 <=0.01
OBS indicates oxidative balance score; A, antioxidant; P, prooxidant; RE, retinol equivalent; ATE, alpha-tocopherol equivalent; BMI, body mass index
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Association between OBS and MetS and its components
Table 3 shows the association between OBS as a categori-
cal variable and a continuous variable and MetS traits. 
When OBS was used as a continuous variable, we found 
higher OBS was negatively associated with MetS both 
in crude model and adjusted model. After adjusted all 
covariables, each one SD increase in the OBS was found 
to be associated with an 4% decrease in the risk of MetS 
(OR = 0.96, 95%CI = 0.95–0.97). When OBS was used as a 
categorical variable and compared with the lowest quan-
tile as a reference, the OR values of MetS in the Q4 group 
(the OBS group with the strongest antioxidant proper-
ties) were 0.55 (95%CI: 0.47–0.64, P for trend < 0.0001). 
Participants in the other three groups were less likely 
to be at risk for MetS than participants in the lowest 
quartile.

The results of the multivariable logistic regressions 
showed that OBS was significantly associated with MetS 
components. When OBS was treated as a continuous 
variable, it was significantly and negatively associated 

with high WC (OR = 0.96), elevated TG (OR = 0.99), low 
HDL-C(OR = 0.97), hypertension (OR = 0.98) and elevated 
FBG levels (OR = 0.98). After full adjustment, the results 
remained significant, the estimates of OR were 0.95, 0.98, 
0.97, 0.98 and 0.97, respectively. Participants in the high-
est quantile of OBS had lower odds of abdominal obesity, 
hypertension, elevated TG, low HDL-C, elevated FBG 
levels, respectively(WC: OR = 0.61, 95%CI = 0.54–0.69, 
P < 0.0001; hypertension: OR = 0.69, 95%CI = 0.58–0.83, 
P < 0.0001; elevated TG: OR = 0.68, 95%CI = 0.57–0.82, 
P < 0.0001; low HDL-C: OR = 0.60, 95%CI = 0.50–0.70, 
P < 0.0001: elevated FBG: OR = 0.74, 95%CI = 0.62–0.88, 
P < 0.0001). Our results indicated that the removal of any 
single OBS component did not significantly affect the 
results for subjects, and the removal of the OBS com-
ponents brought OR estimates within 5% of the original 
model results (Table S1). When BMI was removed from 
OBS, the associations of OBS with the increase of TG 
and FBG levels were no longer significant, and other OBS 
components did not alter the associations between OBS 

Table 2 The distribution of baseline characteristics and metabolic-related factors among OBS quantiles for 16,850 participants
Characteristics Total Q1 Q2 Q3 Q4 P-value

n = 16,850 n = 4640 n = 4548 n = 3697 n = 3965
Age (Years) 45.19(0.26) 45.18(0.33) 45.73(0.35) 45.22(0.38) 44.65(0.39) 0.06
PIR 3.19(0.03) 2.82(0.05) 3.14(0.04) 3.35(0.05) 3.45(0.04) < 0.0001
Energy (kcal) 2240.20(11.99) 1541.54(13.53) 2023.94(15.80) 2450.89(21.25) 2941.48(27.98) < 0.0001
CRP (mg/dL) 0.37(0.01) 0.45(0.02) 0.37(0.01) 0.34(0.02) 0.29(0.01) < 0.0001
Sex (%) 0.39
 Female 7862(46.66) 2143(49.43) 2100(47.47) 1713(47.90) 1906(49.49)
 Male 8988(53.34) 2497(50.57) 2448(52.53) 1984(52.10) 2059(50.51)
Race/Ethnicity (%) < 0.0001
 Non-Hispanic White 9199(54.59) 2219(70.40) 2431(73.72) 2168(78.72) 2381(79.96)
 Non-Hispanic Black 2924(17.35) 1147(13.64) 802(9.70) 519(6.80) 456(5.60)
 Mexican-Americans 3040(18.04) 829(6.84) 849(6.86) 638(6.27) 724(6.63)
 Other 1687(10.01) 445(9.12) 466(9.72) 372(8.21) 404(7.81)
Marital status (%) < 0.0001
 Married life 10,690(63.44) 2744(61.59) 2879(63.98) 2447(67.20) 2620(68.52)
 Divorced /widowed 2781(16.5) 889(17.18) 750(14.13) 590(14.63) 552(11.95)
 Unmarried 3379(20.05) 1007(21.23) 919(21.89) 660(18.16) 793(19.53)
Education level (%) < 0.0001
 Less than high school 4002(23.75) 1400(19.74) 1139(15.78) 766(12.89) 697(10.08)
 High school 4009(23.79) 1261(29.44) 1102(25.42) 855(23.99) 791(18.65)
 More than high school 8839(52.46) 1979(50.82) 2307(58.80) 2076(63.12) 2477(71.27)
WC (cm) 96.61(0.24) 98.82(0.39)) 97.54(0.32) 96.20(0.38) 93.91(0.37) < 0.0001
FBG (mg/dL) 102.24(0.43) 103.49(0.76) 103.42(0.85) 101.34(0.77) 100.64(0.74) 0.01
TG (mg/dL) 140.42(2.06) 145.25(3.61) 145.90(4.93) 138.65(3.64) 131.71(3.79) 0.03
HDL-C (mg/dL) 52.73(0.23) 50.56(0.31) 52.26(0.35) 53.18(0.40) 54.88(0.36) < 0.0001
SBP (mmHg) 121.31(0.22) 122.36(0.43) 122.02(0.29) 121.23(0.39) 119.67(0.36) < 0.0001
DBP (mmHg) 71.66(0.22) 72.01(0.26) 71.70(0.31) 71.55(0.30) 71.38(0.32) 0.35
MetS (%) < 0.0001
 Without 11,993(71.18) 3123(68.68) 3171(72.17) 2674(74.13) 3025(78.59)
 With 4857(28.82) 1517(31.32) 1377(27.83) 1023(25.87) 940(21.41)
MetS indicates metabolic syndrome; WC, waist circumference; HDL-C, high-density lipoprotein cholesterol; FBG, fasting blood glucose; TG, triglycerides; SBP, systolic 
blood pressure; DBP, diastolic blood pressure; PIR, the ratio of family income to poverty; CRP, C-reactive protein
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and MetS and its components (Pinteraction > 0.05). When 
OBS were categorized into four intervals, the significant 
associations were no longer observed (Table S2).

Considering that the diagnostic criteria for MetS are 
slightly different, WC, HDL-C, TG, FBG levels, and 
blood pressure were used as continuous variables as com-
ponents of MetS to further analyze the effect of OBS on 
them (Table S3). We found that higher level of OBS were 
associated with lower WC (β = -5.99; 95% CI: -6.86,-5.11; 
P < 0.001), TG (β = -23.1; 95% CI: -34.6, -11.7; P < 0.001), 
SBP (β = -3.25; 95% CI:-4.41, -2.08; P < 0.001) and DBP 
(β = -2.33; 95% CI: -3.32, -1.34; P < 0.001), while it was 
directly proportional to HDL-C levels in the multivariate 
model (β = 3.75; 95% CI: 2.70, 4.81; P < 0.001). However, 
the effect of OBS on FBG levels was not statistically sig-
nificant (P = 0.228).

Association between dietary OBS/lifestyle OBS and MetS 
traits
Figure  1 lists the results of the multivariable logis-
tic regression analysis used to assess the association 
of dietary and lifestyle OBS with MetS and its compo-
nents. When dietary OBS/lifestyle OBS was treated 
as a continuous variable, an increased dietary OBS 

was negatively related to the risks of MetS (per 1SD, 
OR = 0.89, 95%CI = 0.84–0.95) and its components (ORs 
ranging from 0.86 to 0.90), but not of elevated FBG lev-
els and hypertension (Fig.  1A). For lifestyle OBS, it was 
significantly and negatively associated with each trait 
of MetS (Fig. 1A). When dietary OBS and lifestyle OBS 
were analyzed as categorical variables, the associations of 
the two OBS with the risk of MetS and its components 
are shown in Fig.  1B and C, respectively. Dietary OBS 
showed significant negative associations with MetS (Q4 
vs. Q1), HDL-C (Q4 vs. Q1), TG (Q4 vs. Q1), and WC 
(Q4 vs. Q1) with ORs of 0.75,0.67, 0.74, and 0.72, respec-
tively (Fig. 1B). Lifestyle OBS showed similar significant 
negative associations with MetS and all its components, 
with ORs of 0.16, 0.52, 0.43, 0.44, 0.12, and 0.38 for MetS 
(Q4 vs. Q1), FBG (Q4 vs. Q1), HDL-C (Q4 vs. Q1), TG 
(Q4 vs. Q1), WC (Q4 vs. Q1), and hypertension (Q4 vs. 
Q1), respectively (Fig. 1C). This result shows that adher-
ence to antioxidant dietary nutrients has a limited pro-
tective effect on MetS, and it is more necessary to adhere 
to healthy lifestyle behaviors.

Table 3 Association between OBS and MetS and its components in US adult population
OBS Q1 Q2 Q3 Q4 Ptrend Continuous
Cut-off value 3–15 16–21 22–26 27–37
High WC
 Model 1 1 (ref ) 0.83(0.75,0.93) 0.75(0.66,0.85) 0.55(0.49,0.62) < 0.0001 0.96(0.96,0.97)
 Model 2 1 (ref ) 0.84(0.75,0.94) 0.76(0.66,0.87) 0.55(0.49,0.62) < 0.0001 0.96(0.95,0.97)
 Model 3 1 (ref ) 0.87(0.77,0.98) 0.80(0.70,0.93) 0.61(0.54,0.69) < 0.0001 0.95(0.94,0.96)
Elevated TG
 Model 1 1 (ref ) 1.00(0.89,1.13) 0.98(0.86,1.11) 0.82(0.71,0.95) 0.008 0.99(0.98,1.00)
 Model 2 1 (ref ) 0.98(0.86,1.13) 0.96(0.84,1.11) 0.83(0.72,0.97) 0.016 0.99(0.98,1.00)
 Model 3 1 (ref ) 0.92(0.80,1.06) 0.85(0.73,0.99) 0.68(0.57,0.82) < 0.0001 0.98(0.97,0.99)
Low HDL-C
 Model 1 1 (ref ) 0.75(0.67,0.85) 0.73(0.65,0.83) 0.55(0.48,0.63) < 0.0001 0.97(0.96,0.97)
 Model 2 1 (ref ) 0.79(0.70,0.90) 0.78(0.69,0.88) 0.60(0.53,0.68) < 0.0001 0.97(0.96,0.98)
 Model 3 1 (ref ) 0.79(0.70,0.90) 0.78(0.68,0.90) 0.60(0.50,0.70) < 0.0001 0.97(0.96,0.98)
Hypertension
 Model 1 1 (ref ) 0.97(0.86,1.09) 0.91(0.80,1.03) 0.73(0.64,0.83) < 0.0001 0.98(0.98,0.99)
 Model 2 1 (ref ) 0.95(0.82,1.09) 0.93(0.81,1.07) 0.76(0.65,0.88) < 0.001 0.98(0.98,0.99)
 Model 3 1 (ref ) 0.92(0.80,1.06) 0.88(0.75,1.03) 0.69(0.58,0.83) < 0.0001 0.98(0.97,0.99)
Elevated FBG
 Model 1 1 (ref ) 0.92(0.81,1.05) 0.85(0.74,0.97) 0.71(0.61,0.82) < 0.0001 0.98(0.97,0.99)
 Model 2 1 (ref ) 0.92(0.80,1.05) 0.88(0.77,1.00) 0.78(0.67,0.91) < 0.001 0.99(0.98,0.99)
 Model 3 1 (ref ) 0.90(0.79,1.04) 0.85(0.74,0.97) 0.74(0.62,0.88) 0.894 0.97(0.96,0.98)
MetS
 Model 1 1 (ref ) 0.85(0.75,0.95) 0.77(0.68,0.86) 0.60(0.53,0.68) < 0.0001 0.97(0.97,0.98)
 Model 2 1 (ref ) 0.84(0.74,0.96) 0.78(0.69,0.89) 0.63(0.55,0.72) < 0.0001 0.97(0.96,0.98)
 Model 3 1 (ref ) 0.81(0.71,0.92) 0.72(0.62,0.82) 0.55(0.47,0.64) < 0.0001 0.96(0.95,0.97)
Model 1: original model, without adjusting factors; Model 2: adjusted according to age, sex, race, marital status and education level; Model 3: on the basis of Model 2, 
additionally adjusted energy intake and CRP level. OBS indicates oxidative balance score; MetS, metabolic syndrome; WC, waist circumference; HDL-C, high-density 
lipoprotein cholesterol; FBG, fasting blood glucose; TG, triglycerides; OR, odds ratio; CI, confidence interval
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Association of different OBS with MetS traits stratified by 
sex
The study conducted subgroup analyses and interac-
tion tests, stratified by sex, to assess the consistency of 
the relationship between OBS and MetS in the general 
population. Additionally, the aim was to identify poten-
tial variations in different population settings. Table S4 
shows the relationship between total OBS, dietary OBS 
and lifestyle OBS and MetS traits discovered by multi-
ple logistic regression in different sex subgroups. In the 
unadjusted model, there was a significant linear trend for 
total OBS, dietary OBS and lifestyle OBS and MetS traits 
in all subgroups (P for trend < 0.0001). After adjusting for 
all confounding factors, we observed a stable and sig-
nificant negative association between different OBS and 

MetS risks in both male and female subgroups. Higher 
total OBS, dietary OBS, and lifestyle OBS in the high-
est quartile relative to the lowest quartile, were associ-
ated with a notably diminished risk of abdominal obesity, 
elevated TG and low HDL-C levels. The OBS was nega-
tively associated with the odds of hypertension, while the 
subgroup analysis by sex unveiled no statistically signifi-
cant relationship between dietary OBS and hypertension. 
Intriguingly, an analysis of the association between ele-
vated blood glucose, OBS, and dietary OBS interval odds 
ratios revealed non-statistically significant results and a 
lack of dose-response effect among men (Figure S1). In 
stark contrast, among women, the odds of elevated FBG 
in the highest OBS interval were statistically significantly 

Fig. 1 Association of the dietary/lifestyle OBS as a continuous per SD (A) and a categorical variable (B, C) with MetS and its components risk. Adjusted 
for age, sex, race, marital status, education level, energy intake and CRP level. Asterisk refers to significant difference for MetS and its components risk at 
different dietary/lifestyle OBS interval. OBS indicates oxidative balance score; MetS, metabolic syndrome; WC, waist circumference; HDL-C, high-density 
lipoprotein cholesterol; FBG, fasting blood glucose; TG, triglycerides; OR, odds ratio; CI, confidence interval
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lower 34%, and the OBS-gender interaction was statisti-
cally significant (Pinteraction=0.03).

Analysis of restricted cubic spline regression stratified by 
sex
Subsequently, the relationships between OBS and MetS 
traits in both men and women were further assessed 
through the utilization of RCS curves and multivariable 
logistic regression (model 3, Fig. 2). Figure 2A illustrates 
a distinct trend of decreasing odds ratio (OR) for MetS 
with rising OBS, which was consistent across sex sub-
groups (males: P for nonlinear < 0.0001, females: P for 
nonlinear = 0.0054). Interestingly, the OBS was negatively 
associated with the FBG levels in a linear manner in both 
males and females. When the study endpoints were WC 
and TG levels, the non-linearity trend of decreasing OR 
with increasing OBS was noticed, which remained across 
sex subgroups. Significant nonlinear relationships were 
identified between OBS and hypertension (males: P for 
nonlinear < 0.0001, females: P for nonlinear = 0.2760) and 
HDL-C levels (males: P for nonlinear < 0.0001, females: 
P for nonlinear = 0.0558) in males and not in female. 
Despite slight variations observed in the results of the 
nonlinear analysis of the restricted cubic splines, the 
overall trends of the MetS traits and OBS remained gen-
erally consistent across the plots.

Discussion
In this study, we investigated the association of oxida-
tive homeostasis represented by OBS with MetS and its 
components in a large US population-based study. Our 
analysis revealed consistent and negative associations 
between OBS and MetS, hypertension, dyslipidemia, and 
abdominal obesity were negative and stable in both males 
and females. The observed inverse association between 
OBS and hypertension or FBG levels appeared to primar-
ily influenced by BMI. The association between dietary 
OBS intervals and elevated FBG levels was not statisti-
cally significant in men, whereas the risk was lower by 
25% in women. In addition, our findings underscored 
the significant association of an antioxidant-rich diet and 
a health-conscious lifestyle on cardiometabolic mark-
ers. In essence, the higher the different OBS scores, the 
lower the risk of MetS and its components. Our findings 
emphasize the potential benefits of adopting an antioxi-
dant-focused dietary and lifestyle approach for the pre-
vention of MetS and its related health concerns.

The role of vitamins in mitochondrial metabolism 
and their antioxidant properties suggest that they may 
play a role in the prevention of MetS. Riboflavin, niacin, 
vitamin B6, folic acid and vitamin B12 may exert antiox-
idant effects directly or indirectly through their involve-
ment in mitochondrial respiratory reactions, glycolysis, 

Fig. 2 Dose-response associations between OBS and risk of MetS traits stratified by sex. (A) MetS; (B) Elevated FBG; (C) Low HDL-C; (D) Elevated TG; (E) 
High WC; (F) Hypertension. The solid lines and shaded areas represent the central risk estimates and 95% CIs. OBS indicates oxidative balance score; MetS, 
metabolic syndrome; WC, waist circumference; HDL-C, high-density lipoprotein cholesterol; FBG, fasting blood glucose; TG, triglycerides; OR, odds ratio; 
CI, confidence interval
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nucleotide synthesis, or mitochondrial tRNA modifica-
tion [30]. In addition, adequate micronutrient intake is 
negatively associated with MetS, which can be partly 
explained by the inhibition of lipid peroxidation and 
increased superoxide dismutase (SOD), catalase (CAT), 
glutathione reductase (GR) and glutathione peroxidase 
(GPX) activities [31].

In 2002, the first OBS scoring system was created, 
which was based on a combination of the intake of two 
dietary antioxidants (vitamin C and β-carotene) and a 
dietary pro-oxidant (iron) [23]. Studies in recent years 
have taken into account a wider range of factors. For life-
style factors, studies have shown that physical activity 
increases antioxidant markers and decreases pro-oxidant 
markers, regardless of the intensity and type of exercise 
[32]. Alcohol intake and smoking are the two main fac-
tors that play a pro-oxidant role. Chronic alcohol intake 
induces OS through the oxidation of ethanol to acetalde-
hyde, which may produce RONS, nucleic acid oxidation, 
and reduced antioxidant enzyme activity [33]. The OBS 
of the present study incorporated 16 nutrients and 4 life-
style factors, enabling a more comprehensive assessment 
of oxidative stress levels.

To our knowledge, this is the first study to explore 
whether combined OBS is associated with MetS risk in 
the US population. We found through literature search 
that only two studies have evaluated the association 
between the imbalance of oxidants and antioxidants and 
MetS, which not only concentrated in the Asian popu-
lation, but also had heterogeneous results [24, 25]. Our 
results are consistent with those of the Korean study, 
which showed a 35% lower risk of MetS in the highest 
quartile of OBS than Q1 [25]. However, another cross-
sectional study recruiting 847 Iranian participants aged 
18–65 years found no significant association between 
OBS and MetS in Tehran adults [24]. The inconsistency 
between our findings and the Iranian cross-sectional 
study may be due to different sample sizes and adjust-
ment models in each study as well as different compo-
nents of the OBS. Due to cultural reasons, the Iranian 
study did not include enough data about drinking to cal-
culate OBS.

In addition, our study demonstrated that a balance 
of antioxidant and pro-oxidant exposures reduced the 
risk of abdominal obesity, dyslipidemia, and hyperten-
sion, consistent with previous results from a prospective 
cohort study in the US [34]. An independent examina-
tion from the ATTICA study also revealed a statistically 
significant reverse correlation between adherence to 
the Mediterranean diet and serum TG levels [35]. Our 
study found that when BMI was excluded from OBS, 
the correlation phase of TG was no longer significant, 
suggesting that obesity drives this correlation, which is 
consistent with the general consensus that obesity and 

insulin resistance are central links in the characteristics 
of MetS.

In our study, we confirmed that the higher OBS and 
lifestyle OBS were associated with decreased risk of 
hyperglycemia. Clinical and animal studies have demon-
strated that oxidative stress can disrupt redox reactions 
in glycolysis, activate alternative glucose metabolic path-
ways, and ultimately lead to the overproduction of reac-
tive oxygen species (ROS) and lipid peroxidation, thereby 
triggering a cycle of oxidative stress that exacerbates and 
worsens hyperglycemia [36–39]. This study pointed out 
that the phenomenon that oxidative imbalance would 
affect the increase of FBG was pronounced in women, 
which might be due to the gender difference in lipid 
metabolism and the anti-estrogen effect of unhealthy 
lifestyle that can lead to insulin resistance [40]. Estrogen 
exerts a powerful antioxidant and antioxidant gene regu-
latory role by stimulating the expression and activity of 
antioxidant enzymes, such as superoxide dismutase and 
glutathione peroxidase [41]. In contrast, androgens are 
thought to induce OS because they increase metabolic 
rate, which may increase ROS production by increas-
ing oxygen consumption [42]. In addition, in one study, 
men consumed higher levels of processed meats and 
sugary beverages than women, which can lead to inflam-
mation, insulin resistance, and OS. High intake of these 
specific foods may strongly attenuate the beneficial prop-
erties of high dietary OBS on fasting glucose reduction 
in men. The present investigation examined the correla-
tion between each component and elevated FBG levels, 
revealing that the prooxidative factor BMI contributed 
to the elucidation of the interaction between OBS and 
gender. Nevertheless, further exploratory basic science 
or clinical inquiries are warranted to comprehensively 
understand potential gender-based distinctions in the 
mechanism by which oxidative stress contributes to the 
elevation of FBG levels.

This study possesses several notable advantages. First 
of all, compared with other studies, this study compre-
hensively considered the oxidative potential of dietary 
nutrients and lifestyle behaviors on the occurrence and 
development of MetS. Secondly, our utilization of a com-
plex multi-stage probability sampling design ensures the 
selection sample from the civilian non-institutionalized 
resident population. This enables us to extend findings 
of our findings to encompass all civilian non-institution-
alized adult residents within the United States. Thirdly, 
our study adjusted for various confounding factors. 
Fourthly, the sensitivity analysis results exhibited that the 
key conclusions of this study were robust. Furthermore, 
OBS can be used as a predictive tool to comprehensively 
assess the degree of association between the overall state 
of oxidative balance and MetS. Consequently, the impli-
cations of our findings extend into the realm of public 
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health, holding promise for bolstering MetS prevention 
strategies.

Simultaneously, our study does harbor certain poten-
tial limitations that warrant acknowledgment. We used 
self-reported intakes to assess pro- and anti-oxidant 
exposures. Although using 24-hour dietary reviews, 
there is an inevitable recall bias. The dietary question-
naires may only capture some possible nutrient sources 
and consider their bioavailability. In addition, OBS cal-
culations omitted the consideration of endogenous fac-
tors impacting cellular antioxidant defense, DNA damage 
and repair, cell growth, and cell death attributed to the 
availability of database variables. Thirdly, since the study 
was a cross-sectional study, it was difficult to elucidate 
a causal relationship between OBS and MetS. Reverse 
causal associations cannot be ruled out for the time 
being. Therefore, more prospectively designed studies 
are needed to demonstrate the effectiveness of OBS and 
we will continue to validate the predictive ability of OBS 
using cohort studies in the future.

In conclusion, by estimating the possibility of OBS 
as a predictor of MetS risk, it is found that higher OBS 
(indicating dominant antioxidant exposure) is associated 
with lower MetS and its components risk, which is not 
affected by a specific component of OBS construction. 
The association of dietary OBS with FBG was gender-
specific. The results of this study showed that the imbal-
ance of oxidation suggests the existence of metabolic 
disorders. The negative association of OBS with FBG and 
TG levels were mainly driven by obesity. Comparatively, 
amalgamating diverse pro- and anti-oxidative expo-
sures into a unified score proves to be a more effective 
approach in evaluating oxidative stress-related factors 
encompassing obesity, dietary nutritional attributes, and 
lifestyle behaviors. Embracing an antioxidant-rich diet 
and lifestyle emerges as a preventive strategy against the 
onset of metabolic disorders.
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